Abstract
Building an efficient deep learning-based Facial Expression Recognition (FER) system is challenging due to the requirements of large amounts of personal data and the rise in data privacy concerns. Federated learning has emerged as a promising solution for such problems, which however is communication-inefficient. Recently, pre-trained models have shown effective performance in federated learning setups regarding convergence. In this paper, we extend the traditional FER towards a new paradigm, where we study the performance of federated fine-tuning of standard vision pre-trained models for FER. More specifically, we propose a Federated Deep Facial Expression Recognition (FedFER) framework, where clients jointly learn to fuse the representations generated by pre-trained deep learning models rather than training a large-scale model from scratch without sharing any data. With the help of extensive experimentation using standard pre-trained vision models (ResNet-50, VGG-16, Xception, Vision Transformers) and benchmark datasets (CK+, FERG, FER-2013, JAFFE, MUG), this paper presents interesting perspectives for future research in the direction of federated Deep FER.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
References
Alom, M.Z., et al.: The history began from alexnet: a comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164 (2018)
Bandyopadhyay, S., Thakur, S.S., Mandal, J.K.: Online recommendation system using human facial expression based emotion detection: a proposed method. In: Mandal, J.K., Buyya, R., De, D. (eds.) Proceedings of International Conference on Advanced Computing Applications. AISC, vol. 1406, pp. 459–468. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-5207-3_38
Bonawitz, K., et al.: Towards federated learning at scale: system design. Proc. Mach. Learn. Syst. 1, 374–388 (2019)
Chen, F., Long, G., Wu, Z., Zhou, T., Jiang, J.: Personalized federated learning with graph. arXiv preprint arXiv:2203.00829 (2022)
Chen, H.Y., Tu, C.H., Li, Z., Shen, H.W., Chao, W.L.: On pre-training for federated learning. arXiv preprint arXiv:2206.11488 (2022)
Chen, J., Xu, W., Guo, S., Wang, J., Zhang, J., Wang, H.: Fedtune: a deep dive into efficient federated fine-tuning with pre-trained transformers. arXiv preprint arXiv:2211.08025 (2022)
Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
Deng, J., Pang, G., Zhang, Z., Pang, Z., Yang, H., Yang, G.: CGAN based facial expression recognition for human-robot interaction. IEEE Access 7, 9848–9859 (2019)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Gupta, S., Kumar, P., Tekchandani, R.K.: Facial emotion recognition based real-time learner engagement detection system in online learning context using deep learning models. Multimedia Tools Appl. 82(8), 11365–11394 (2023)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, Q., Huang, C., Wang, X., Jiang, F.: Facial expression recognition with grid-wise attention and visual transformer. Inf. Sci. 580, 35–54 (2021)
Ji, X., Dong, Z., Han, Y., Lai, C.S., Zhou, G., Qi, D.: EMSN: an energy-efficient memristive sequencer network for human emotion classification in mental health monitoring. IEEE Trans. Consum. Electron. 69, 1005–1016 (2023)
Kahou, S.E., et al.: Emonets: multimodal deep learning approaches for emotion recognition in video. J. Multimodal User Interfaces 10 (2015). https://doi.org/10.1007/s12193-015-0195-2
Kim, T., Yu, C., Lee, S.: Facial expression recognition using feature additive pooling and progressive fine-tuning of CNN. Electron. Lett. 54(23), 1326–1328 (2018)
Knyazev, B., Shvetsov, R., Efremova, N., Kuharenko, A.: Convolutional neural networks pretrained on large face recognition datasets for emotion classification from video. arXiv preprint arXiv:1711.04598 (2017)
Konečnỳ, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527 (2016)
Li, L., Fan, Y., Tse, M., Lin, K.Y.: A review of applications in federated learning. Comput. Ind. Eng. 149, 106854 (2020). https://doi.org/10.1016/j.cie.2020.106854, https://www.sciencedirect.com/science/article/pii/S0360835220305532
Li, S., Deng, W.: Deep facial expression recognition: a survey. IEEE Trans. Affect. Comput. 13, 1195–1215 (2020)
Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)
Liu, Z., Peng, Y., Hu, W.: Driver fatigue detection based on deeply-learned facial expression representation. J. Vis. Commun. Image Represent. 71, 102723 (2020)
Luo, C., Fan, X., Yan, Y., Jin, H., Wang, X.: Optimization of three-dimensional face recognition algorithms in financial identity authentication. Int. J. Comput. Commun. Control 17(3) (2022)
Ma, F., Sun, B., Li, S.: Robust facial expression recognition with convolutional visual transformers. arXiv preprint arXiv:2103.16854 (2021)
Mandal, M., Verma, M., Mathur, S., Vipparthi, S.K., Murala, S., Kranthi Kumar, D.: Regional adaptive affinitive patterns (RADAP) with logical operators for facial expression recognition. IET Image Proc. 13(5), 850–861 (2019)
McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.V.: Communication-efficient learning of deep networks from decentralized data. In: Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR, 20–22 April 2017. https://proceedings.mlr.press/v54/mcmahan17a.html
Meena, G., Mohbey, K.K.: Sentiment analysis on images using different transfer learning models. Procedia Comput. Sci. 218, 1640–1649 (2023)
Meng, Q., Zhou, F., Ren, H., Feng, T., Liu, G., Lin, Y.: Improving federated learning face recognition via privacy-agnostic clusters. arXiv preprint arXiv:2201.12467 (2022)
Mohan, K., Seal, A., Krejcar, O., Yazidi, A.: Facial expression recognition using local gravitational force descriptor-based deep convolution neural networks. IEEE Trans. Instrum. Meas. 70, 1–12 (2020)
Nguyen, J., Malik, K., Sanjabi, M., Rabbat, M.: Where to begin? exploring the impact of pre-training and initialization in federated learning. arXiv preprint arXiv:2206.15387 (2022)
Pávez, R., Díaz, J., Arango-López, J., Ahumada, D., Méndez, C., Moreira, F.: Emotion recognition in children with autism spectrum disorder using convolutional neural networks. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds.) WorldCIST 2021. AISC, vol. 1365, pp. 585–595. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72657-7_56
Putro, M.D., Nguyen, D.L., Jo, K.H.: A fast CPU real-time facial expression detector using sequential attention network for human-robot interaction. IEEE Trans. Industr. Inf. 18(11), 7665–7674 (2022)
Salman, A., Busso, C.: Privacy preserving personalization for video facial expression recognition using federated learning. In: Proceedings of the 2022 International Conference on Multimodal Interaction, pp. 495–503 (2022)
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)
Shahzad, T., Iqbal, K., Khan, M.A., Iqbal, N., et al.: Role of zoning in facial expression using deep learning. IEEE Access 11, 16493–16508 (2023)
Shao, R., Perera, P., Yuen, P.C., Patel, V.M.: Federated face presentation attack detection. arXiv preprint arXiv:2005.14638 (2020)
Shehada, D., Turky, A., Khan, W., Khan, B., Hussain, A.: A lightweight facial emotion recognition system using partial transfer learning for visually impaired people. IEEE Access 11, 36961–36969 (2023)
Shome, D., Kar, T.: Fedaffect: few-shot federated learning for facial expression recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4168–4175 (2021)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sun, G., Mendieta, M., Yang, T., Chen, C.: Exploring parameter-efficient fine-tuning for improving communication efficiency in federated learning. arXiv preprint arXiv:2210.01708 (2022)
Sun, M., et al.: Attention-rectified and texture-enhanced cross-attention transformer feature fusion network for facial expression recognition. IEEE Trans. Ind. Inf. 19, 11823–11832 (2023)
Weller, O., Marone, M., Braverman, V., Lawrie, D., Van Durme, B.: Pretrained models for multilingual federated learning. arXiv preprint arXiv:2206.02291 (2022)
Zang, H., Foo, S.Y., Bernadin, S., Meyer-Baese, A.: Facial emotion recognition using asymmetric pyramidal networks with gradient centralization. IEEE Access 9, 64487–64498 (2021)
Zhang, L., Shen, L., Ding, L., Tao, D., Duan, L.Y.: Fine-tuning global model via data-free knowledge distillation for non-iid federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10174–10183 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Srihitha, P.V.N.P., Verma, M., Prasad, M.V.N.K. (2024). Federated Scaling of Pre-trained Models for Deep Facial Expression Recognition. In: Kaur, H., Jakhetiya, V., Goyal, P., Khanna, P., Raman, B., Kumar, S. (eds) Computer Vision and Image Processing. CVIP 2023. Communications in Computer and Information Science, vol 2011. Springer, Cham. https://doi.org/10.1007/978-3-031-58535-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-58535-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58534-0
Online ISBN: 978-3-031-58535-7
eBook Packages: Computer ScienceComputer Science (R0)