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Abstract. Efficiently predicting properties of porous crystalline mate-
rials has great potential to accelerate the high throughput screening
process for developing new materials, as simulations carried out using
first principles model are often computationally expensive. To effectively
make use of Deep Learning methods to model these materials, we need to
utilize the symmetries present in the crystals, which are defined by their
space group. Existing methods for crystal property prediction either have
symmetry constraints that are too restrictive or only incorporate symme-
tries between unit cells. In addition, these models do not explicitly model
the porous structure of the crystal. In this paper, we develop a model
which incorporates the symmetries of the unit cell of a crystal in its ar-
chitecture and explicitly models the porous structure. We evaluate our
model by predicting the heat of adsorption of CO2 for different config-
urations of the mordenite zeolite. Our results confirm that our method
performs better than existing methods for crystal property prediction
and that the inclusion of pores results in a more efficient model.

Keywords: Graph Neural Networks · Porous Materials · Symmetries.

1 Introduction

Deep Learning has shown to be of great use in materials science, in tasks like
property prediction and high-throughput screening of potential materials [5]. In
these workflows, many materials are first simulated using first principles meth-
ods, such as Density Functional Theory (DFT) and classical simulation, such
as Molecular Dynamics (MD), to find candidate materials to synthesize. How-
ever, these simulations are often computationally expensive and can take days
or weeks to simulate a single new material. With Deep Learning, it is possible
to accelerate the process of finding suitable materials, by developing data-driven
surrogate models. These models scale significantly better than first principle
simulators and allow for efficient search of the space of potential candidates [27].
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Graph Neural Network (GNN) architectures are commonly used for modeling
molecules and materials [22] as these objects can effectively be represented as a
graph. However, general-purpose GNNs are too restrictive as they incorporate
only a part of the symmetries and periodicity present in crystal structures.

To overcome these limitations, for crystalline materials, multiple GNN archi-
tectures have recently been proposed [2,4,16,24,31,32] that accurately predict the
properties of materials. These methods are specific extensions of general-purpose
GNN that preserve the geometric structure of the crystal in their data represen-
tation. Despite preserving the geometric structure, none of the proposed models
explicitly encode any information regarding pores, as the empty space does not
lie on the data domain, and is thus not taken into account. Furthermore, they do
not make use of the crystal symmetries in the material representation, since they
are typically equivariant to a symmetry group larger than the space group of the
crystal. We hypothesize that model architectures that do not explicitly model
the porous structure of porous materials will struggle to infer the relevance of
atom arrangements around pores for different properties.

Zeolites are a type of porous, crystalline materials of particular interest, as
they are easily synthesizable [17]. They are used in applications such as gas sepa-
ration and are a potential method for carbon capture [26]. The crystal structure
of zeolites consists of TO4 tetrahedra. In these tetrahedra, the T-atoms can ei-
ther be aluminium or silicon, and both have different influences on the properties
of the material. All four corners of the tetrahedra are shared, which results in
a porous material. In Figure 1a, the porous structure of the Mordenite (MOR)
and ZSM-5 (MFI) zeolites can be seen. The ability to capture CO2 of a zeolite
can be measured by its heat of adsorption in kJ/mol and is calculated as follows:
−∆H = ∆U−RT . Here, ∆U is the difference in internal energy before and after
adsorption, R is the universal gas constant, and T is the temperature. The heat
of adsorption can be influenced by the structure of the different types of zeolites
and the amount and distribution of aluminium atoms in the framework [3,19,33].

Due to the difference in charge between aluminium and silicon atoms, it is
necessary to balance the charge when aluminium atoms are present in a frame-
work. To achieve this, cations such as sodium are inserted in the crystal structure.
Since the cations are positively charged, they additionally attract CO2 through
Coulombic forces, thus increasing the ability of the material to adsorb CO2.
However, while the cations increase the adsorption strength, they also occupy
physical space in the pores of the material. When multiple sodium cations are
inside a pore, they can restrict CO2 from entering it. As a result, the adsorption
capacity of the material decreases. It is unclear which distributions of aluminium
and silicon in different zeolites are optimal to maximize the heat of adsorption.

In this paper, we propose a novel GNN architecture that exploits informa-
tion regarding the porous structure, as well as the symmetry of these materials,
using parameter-sharing based on their space groups. This model allows us to
effectively model the properties of porous crystalline materials.

We empirically validate our approach by modeling the heat of adsorption of
CO2 for the MOR and MFI zeolite. Our contributions are threefold: 1) We adapt
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(a) MOR (b) MFI

Fig. 1: Four unit cells of all silica MOR and MFI viewed along the z-axis and
y-axis respectively. Images were generated using iRASPA [7].

the Equivariant Crystal Networks (ECN) architecture from [16] to be equivariant
with respect to the symmetry group of the unit cell. 2) We extend this architec-
ture to explicitly model pores and show how this modification improves property
prediction performance. 3) We introduce a new dataset containing different con-
figurations of aluminium and silicon for the MOR and MFI zeolites, along with
the CO2 heat of adsorption values for the different configurations.

2 Related Work

Machine Learning Methods for Crystals Due to the success of different
GNN architectures in modeling molecules, similar GNN architectures have been
proposed for predicting material properties. Crystal Graph Convolutional Neu-
ral Networks (CGCNN) [31] are one of the first architectures for crystals, which
include periodicity in the data representation and are invariant with respect to
permutations of atomic indices. In the MEGNet architecture [2], a global state is
used to improve the generalization of the model. Continuous filter convolutions
have been introduced in the SchNet architecture [24], which as a result can model
the precise relative locations of atoms better when calculating local correlations.
Another approach has been proposed in DimeNet [10,11], where the network
also takes directional information between atoms into account. In ALIGNN [4],
the GNN processes simultaneously the graph and the line graph representation
of the crystal, which takes the angles between edges into account. In addition,
a transformer based architecture [32] has been proposed, which additionally en-
codes the periodic nature of the crystal. More recently a new approach has been
proposed [16], which proposes a parameter-sharing scheme for message-passing.
In this method, multiple unit cells are modelled, where parameters are shared
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based on the symmetry group of the crystal lattice. As such, the model gains in
expressivity by encoding a part of the crystal symmetries in its architecture.

Machine Learning in Porous Materials Existing ML methods for porous
materials frequently make use of feature engineering, which is used to predict
properties by traditional ML models or shallow neural networks [15,34]. Another
approach made use of the CGCNN architecture [28] and extended it with engi-
neered features [29] to improve performance. In their method, nodes in the graph
representation do not correspond to atoms but rather correspond to secondary
building units (SBUs), which consist of multiple atoms.

3 Crystal Symmetries

Unit Cell Zeolites are crystalline materials, meaning that they contain an in-
finitely repeating pattern in all directions. This pattern be described by the set
of integral combinations of linearly independent lattice basis vectors ai:

Λ =

{
3∑
i

miai | mi ∈ Z

}
(1)

The crystal lattice has an associated translation group TΛ, which captures trans-
lational symmetry. A unit cell is a subset of the lattice, which tiles the space
of the crystal when translated by lattice vectors and is the minimum repeating
pattern of the crystal. The unit cell is defined by the basis vectors as follows:

U =

{
3∑
i

xiai | 0 ≤ xi < 1

}
(2)

The unit cell of a crystalline material contains a set of atomic positions, which
is defined as S = {xi | xi ∈ U}, where xi is the position of the atom in the
unit cell. In addition to the set of atomic positions, we also define the set of
pores contained in the unit cell. We define each pore using the atoms directly
surrounding the pore. We represent each pore by the location of its center, as
well as its surface area along which diffusion happens in terms of Å2. This results
in the following set of pores: P = {(xpi

, area(pi)) | pi ∈ U}, where pi is the pore
and xpi

is the centre of the pore.

Space Groups In crystalline materials, there are often multiple symmetries
present inside the unit cell, defined by a space group G. The space group G is
the set of isometries that maps the crystal structure onto itself. Each element of
the space group can be expressed as a linear transformation W and a translation
t, represented by a tuple (W, t). When mapping a vector x using an element of
the space group, it is mapped to Wx + t.

Inside a unit cell, every element of the space group G maps the atomic/pore
positions in the unit cell onto itself. While the type of atom at a certain position
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in the unit cell might change as a result of a transformation, the material remains
the same. Therefore, each group action g of the space group can be considered
a permutation of the atoms and pores in the unit cell.

Group Orbits The orbit of an element is created by applying all of the different
elements of a space group G to it. If the element is a vector x, its orbit is the set
of vectors to which the element can be moved by the group action. The orbit of
x is defined as follows:

G · x = {g · x | g ∈ G} (3)

4 Methods

Crystal Representation In our crystal representation, we only consider the
set of atoms inside of the unit cell, as the content of a unit cell fully defines the
porous structures and symmetry of the material. Each atom in the unit cell is
represented by a feature vector ti that is a one-hot encoding of the atom type.
Next to this, we represent each pore inside the unit cell with a feature vector pi,
which contains its surface area, as well as the number of atoms surrounding it.

To represent the topology of the atoms and pores we construct a graph,
where each atom is represented with a node. When the crystal contains clearly
defined covalent bonds these can be used as edges in the graph, like in the case
of zeolites. Pores are included in the graph representation by adding additional
edges between the pore nodes and each atom on the boundary of the pore. By
including these nodes, all atoms around the same pore are reachable from each
other at most in two steps. Without pore nodes, this number could have been
significantly larger, particularly for crystals with larger pores.

The notion of a pore has a certain analogy to the global feature vector in-
troduced in MEGNet [2]. However, our approach is distributed in the geometry
of the crystal which in turn allows the GNN-based model to learn locally dis-
tributed features, which is a more parameter-efficient solution.

Based on [24], we make use of radial basis functions to encode the distance
between two neighboring nodes in the graph. We calculate the edge embedding
eij as in Equation 4, where γ and µ are hyperparameters. When calculating the
distance between two atoms, we respect the periodic boundary conditions set
by the unit cell by using the minimum image convention. Thus, we treat the
opposite boundaries as a single boundary and consider the atoms and pores as
neighbors and therefore sharing an edge.

eij = exp
(
−γ(∥xi − xj∥ − µ)2

)
(4)

Since we are developing a network architecture to predict properties based on
the silicon and aluminium configuration in zeolites, we do not explicitly encode
the oxygen atoms as nodes, as only the atoms placed in the T-sites of each TO4

tetrahedron can change, while oxygen atoms always remain in the same position.
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(a) Without pores (b) With pores

Fig. 2: Weight sharing scheme for MOR (z-axis). Nodes/edges of the same color
share parameters in their node/edge update functions. Dashed edges are between
atoms (circle) and pores (squares). Solid edges are between atoms.

Equivariant Message Passing Since the space group acts as a permutation
on the atoms and pores in the unit cell, we can describe the action of a group
element using Equation 5. Here, πt

g and πp
g are the permutations of the atoms

and pores as a result of group action g.(
gti = tπt

g(i)
∧ gpj = pπp

g (j)

)
∀g ∈ G (5)

As we model different configurations of the same crystal structure using our
architecture, the model needs to be equivariant to G. The defined model is based
on the message passing framework [12], which we extend by defining parameter-
sharing patterns [21] for the message and node update functions.

First, we define how a parameter-sharing pattern for a graph is calculated.
Following [16], we define the parameter-sharing pattern as the colored bipartite
graph Ω ≡ (N, α, β). Here, N is the set of input atoms and pores, α is the
edge color function (α : N × N → {1, ..., Ce}) and β is the node color function
(β : N → {1, ..., Ch}). Ce and Ch are the amounts of unique edge and node colors
respectively. As shown in Equations 6 and 7, the color functions take the same
value if two edges ((i, j), (k, l)) or atoms/pores (i, j) lie on each other’s orbit.

α(i, j) = α(k, l) ⇐⇒ (k, l) ∈ G · (i, j) (6)

β(i) = β(j) ⇐⇒ j ∈ G · i (7)

When introducing a parameter-sharing pattern based on the edge and node
coloring function, we are effectively introducing an additional message (node)
update function for each unique message (node) in the graph representation of
the crystal. Following the proof of Claim 6.1 from [16], the model architecture
remains equivariant to the space group of the crystal. In Figure 2, the parameter-
sharing pattern for MOR can be found, where nodes and edges are colored
according to Equations 6 and 7. The message passing operation equivariant to
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||||

Fig. 3: Overview of the network architecture with pores. The □ and || denote the
layer’s input and concatenation respectively. The + and ∗ denote elementwise
summation and multiplication. hi represents the embedding of node i (which
can be an atom or a pore), while dij represents the distance between nodes i
and j. ma

i is the aggregated message received from atoms and mp
i from pores.

f and σ represent the leaky ReLU and sigmoid activation function respectively.
(W/b)α(i,j) and (W/b)β(i) denote the set of weights for the value of coloring
functions α(i, j) and β(i). In the node update function, pore nodes do not receive
messages from pores (mp

i , red). For all aggregations, sum-pooling is used. Finally,
the node embedding operation is different for atom and pore nodes.

the space group is defined in Equations 8-10, where ti is the atom embedding
and pi is the pore embedding. Here, superscript h indicates messages between
atoms, k messages from pores to atoms and l messages from atoms to pores.

Since different types of crystals have different amounts of atoms and/or differ-
ent space groups, we cannot share the parameters of message-passing operations
between crystals. As a result, each crystal topology requires its own model.

mh
ij = ϕα(i,j)

e (tti, t
t
j , eij), mk

ij = ϕα(i,j)
e (tti,p

t
j , eij), ml

ij = ϕα(i,j)
e (pt

i, t
t
j , eij), (8)

mh
i =

1

|Nh
i |

∑
j∈Nh

i

mh
ij , mk

i =
1

|Nk
i |

∑
j∈Nk

i

mk
ij , ml

i =
1

|N l
i |

∑
j∈Nl

i

ml
ij , (9)

tt+1
i = ϕ

β(i)
h (tti,m

h
i ,m

k
i ), pt+1

i = ϕ
β(i)
h (pt

i,m
l
i). (10)

5 Experiments

Network Architecture In Figure 3, an overview of the model architecture
is presented. First, the edges are embedded using Equation 4 on their distance
(dij), which is followed by a fully connected layer. Simultaneously, both atoms
and pores are embedded using two different fully connected layers, as atoms
have only one feature while pores have two. In the message update function,
the embeddings of the sending and receiving node and the edge embedding are
concatenated, which is followed by a fully connected layer that shares weights ac-
cording to Equation 6. Each message also receives a weighting factor, calculated
by the fully connected layer following the equivariant layer.
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The message aggregation step depends on the node type. Because pore nodes
are included in the graph, we may distinguish between two types of messages
based on whether they are sent from an atom or a pore. To distinguish between
the origin of messages, we separately aggregate messages sent from pores (mp

i )
and atoms (ma

i ). Following the concatenation of the different messages and the
node embedding, we apply 2 linear layers. The node update block also contains
a residual connection [14].

Following multiple message-passing steps, the node features are sum-aggregated,
and an MLP is applied to obtain the final prediction. In the model with pores, we
only aggregate the pore node features. This way, we implicitly force the model
to learn the contribution of each pore to the adsorption capacity.

0 2 4 6 8 10 12
#Al subs (MOR)

20

40

60

80
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2 
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)

0 4 8 12 16 20 24
#Al subs (MFI)

Fig. 4: Heat of Adsorption distri-
butions per amount of Al atoms.

As we are training the model on a sin-
gle crystal structure at a time, it suffices to
keep the architecture relatively simple. We
perform 6 message passing steps, with inter-
nal hidden states of size 16. Then, we pro-
cess each atom (pore) with an MLP with
an output size of 24. Following this, sum-
aggregation is performed, after which the fi-
nal MLP makes the prediction. Our model
implementation is based on ECN [16] and
uses the PyTorch [20] and PyTorch scatter
[8] packages as well as the AutoEquiv library
[25]. The main difference with ECN is that
our architecture only models one unit cell and the symmetries within it, while
ECN models multiple unit cell and the symmetries between the them.

Data Generation To generate a dataset with porous, crystalline materials,
we made use of the Mordenite and ZSM-5 zeolite frameworks. MOR contains 48
T-atoms, and adsorbates diffuse along the z-axis. MFI is a more complex zeolite,
containing 96 T-atoms. It has multiple intersecting pores, where adsorbates can
diffuse along the x-axis and y-axis. As a result, the adsorption capacity between
two configurations with an equal amount of aluminium atoms can vary greatly.

We generated multiple MOR and MFI frameworks with varying aluminium
and silicon distributions, and carried out simulations to calculate the correspond-
ing CO2 heat of adsorption for each configuration. For generating the structures,
the Zeoran program [23] was used and atom coordinates where taken from [1].
For MOR, 4992 structures were generated, where each structure contains up
to 12 aluminium atoms. For MFI, 3296 structures were generated with up to
24 aluminium atoms. The amount of aluminium atoms was chosen such that
they roughly match what is possible in practice. The program makes use of four
different algorithms, which places aluminium atoms in either random positions,
chains, clusters or homogeneously throughout the zeolite framework. To calcu-
late the CO2 heat of adsorption Grand-Canonical Monte Carlo simulations were
carried out using the Widom Particle Insertion method [30], performed with the
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Table 2: Performance of different model architectures on CO2 heat of adsorption
prediction for the MOR and MFI datasets.

MOR MFI

MAE MSE MAE MSE

CGCNN 1.374 ± 0.033 3.414 ± 0.107 2.814 ± 0.047 18.949 ± 0.561
MEGNet 1.260 ± 0.086 2.785 ± 0.290 2.674 ± 0.040 16.533 ± 0.701
Matformer 1.002 ± 0.074 1.843 ± 0.237 2.577 ± 0.372 12.552 ± 2.545
DimeNet++ 0.938 ± 0.028 1.568 ± 0.076 2.862 ± 0.027 19.344 ± 0.472
SchNet 0.895 ± 0.016 1.482 ± 0.055 1.876 ± 0.047 6.826± 0.270
ALIGNN 0.828 ± 0.035 1.293 ± 0.102 1.819± 0.033 6.840 ± 0.187

ECN 1.282 ± 0.028 2.984 ± 0.124 2.484 ± 0.046 12.942 ± 0.610
Ours (w/o pores/syms) 1.184 ± 0.048 2.503 ± 0.163 2.717 ± 0.063 16.775 ± 1.093
Ours (w/o syms) 0.901 ± 0.040 1.505 ± 0.094 2.303 ± 0.110 11.841 ± 1.338
Ours (w/o pores) 0.904 ± 0.023 1.546 ± 0.075 2.029 ± 0.058 8.777 ± 0.375
Ours 0.813± 0.010 1.286± 0.038 1.902 ± 0.024 8.184 ± 0.288

RASPA software [6]. Frameworks were considered rigid and the force field pa-
rameters for the interactions between the zeolite and the adsorbate were taken
from [9]. The force field for carbon dioxide was taken from [13].

In Figure 4, the 95% confidence interval of the heat of adsorption per amount
of aluminium atoms is shown. While there is a strong correlation between the
amount of aluminium atoms and the heat of adsorption, there is still significant
variance in the heat of adsorption for each amount of aluminium substitutions.

Table 1: Parameter count.

Model Parameters

CGCNN 0.11M
MEGNet 0.19M
Matformer 2.77M
DimeNet++ 1.74M
SchNet 0.44M
ALIGNN 4.01M
ECN 2.81M
Ours (MOR) 0.03M
Ours (MFI) 0.15M

Model Evaluation To evaluate the predictive
performance of our models, we made an unin-
formed, random assignment of samples to the train-
ing (90%) and testing set (10%). We compare the
performance of our model to different baselines
[2,4,10,16,24,31,32]. For each baseline, we use the
hyperparameters from their original papers. In ad-
dition, we conducted an ablation study, where we
excluded pores and symmetries from our model to
asses their contribution.

Since predicting the heat of adsorption is a re-
gression task, we made use of the Huber loss func-
tion. We used the AdamW optimizer [18] with a
learning rate of 0.001, and trained each model for 200 epochs. We report the
mean-absolute error (MAE) and mean-squared error (MSE). To obtain confi-
dence bounds, we trained each model 10 times with random weight initialization.
The code for the model implementations and the zeolite dataset are available on
www.github.com/marko-petkovic/porousequivariantnetworks.

As can be seen in Table 2, our model obtains the best results for MOR, and
achieves competitive results with SchNet and ALIGNN on MFI, despite using

www.github.com/marko-petkovic/porousequivariantnetworks


10 M. Petković et al.

significantly fewer parameters (Table 1). In addition, our model outperformed
the ablated versions. For MFI, the other baselines achieve significantly worse
results. We speculate that this behaviour is caused by the spatial features of the
zeolites not explicitly being encoded in the graph representation.

20 40 60
True CO2 HoA (kJ/mol)

20

40

60

Pr
ed

. C
O

2 
H

oA
 (k

J/
m

ol
)

Model performance on testing set

Fig. 5: Predicted against true
heat of adsorption.

In Figure 5, we the true against the pre-
dicted heat of adsorption values for our best
model with pores on the MOR and MFI
datasets are shown. We see that most predic-
tions for both models are accurate. For higher
heat of adsorption values, the models perform
slightly worse. This may be due to an insuf-
ficient amount of training examples present
with a high heat of adsorption.

In addition, we carried out experiments
to compare the data efficiency of our model,
ALIGNN and SchNet. Here, we trained each
model using different fractions ( 18 ,

1
4 ,

1
2 ,

3
4 and

1) of the training set, and evaluated them on the same testing set. In Figure 6,
we see that our model achieves a data efficiency comparable to ALIGNN and
better than SchNet for MOR. In the case of MFI, we see that our model has
a slightly lower data efficiency than ALIGNN, while performing slightly better
than SchNet for low amounts of training data.

500 1500 2500 3500 4500
Amount of training datapoints

0.8

1.0

1.2

1.4

M
AE

MAE for different training set sizes

w/ pores
ALIGNN
SchNet

(a) MOR

500 1000 1500 2000 2500 3000
Amount of training datapoints

2.0

2.5

M
AE

MAE for different training set sizes

w/ pores
ALIGNN
SchNet

(b) MFI

Fig. 6: Data efficiency (MAE on test set) with different amounts of training data.

6 Discussion

We have proposed a new type of network which can exploit both symmetries
inside the unit cell as well as the structure of porous crystalline materials. Our
method achieved excellent performance on the CO2 heat of adsorption prediction
task, and has also shown a better parameter efficiency and a competitive data
efficiency. This class of models has a significant potential to accelerate the high
throughput screening of porous materials, by quickly narrowing the search space
for candidate materials.



Equivariant Parameter Sharing for Porous Crystalline Materials 11

References

1. Baerlocher, C., McCusker, L.B., Olson, D.H.: Atlas of zeolite framework types.
Elsevier (2007)

2. Chen, C., Ye, W., Zuo, Y., Zheng, C., Ong, S.P.: Graph networks as a universal
machine learning framework for molecules and crystals. Chemistry of Materials
31(9), 3564–3572 (2019)

3. Choi, H.J., Jo, D., Hong, S.B.: Effect of framework si/al ratio on the adsorption
mechanism of co2 on small-pore zeolites: Ii. merlinoite. Chemical Engineering Jour-
nal 446, 137100 (2022)

4. Choudhary, K., DeCost, B.: Atomistic line graph neural network for improved
materials property predictions. npj Computational Materials 7(1), 185 (2021)

5. Choudhary, K., DeCost, B., Chen, C., Jain, A., Tavazza, F., Cohn, R., Park, C.W.,
Choudhary, A., Agrawal, A., Billinge, S.J., et al.: Recent advances and applications
of deep learning methods in materials science. npj Computational Materials 8(1),
59 (2022)

6. Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: Raspa: molecular simulation
software for adsorption and diffusion in flexible nanoporous materials. Molecular
Simulation 42(2), 81–101 (2016)

7. Dubbeldam, D., Calero, S., Vlugt, T.J.: iraspa: Gpu-accelerated visualization soft-
ware for materials scientists. Molecular Simulation 44(8), 653–676 (2018)

8. Fey, M.: Pytorch scatter (2023)
9. Garcia-Sanchez, A., Ania, C.O., Parra, J.B., Dubbeldam, D., Vlugt, T.J., Krishna,

R., Calero, S.: Transferable force field for carbon dioxide adsorption in zeolites. The
Journal of Physical Chemistry C 113(20), 8814–8820 (2009)

10. Gasteiger, J., Giri, S., Margraf, J.T., Günnemann, S.: Fast and uncertainty-aware
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