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Abstract. Deep learning architectures suffer from depth-related per-
formance degradation, limiting the effective depth of neural networks.
Approaches like ResNet are able to mitigate this, but they do not com-
pletely eliminate the problem. We introduce Globally Connected Neural
Networks (GloNet), a novel architecture overcoming depth-related is-
sues, designed to be superimposed on any model, enhancing its depth
without increasing complexity or reducing performance. With GloNet,
the network’s head uniformly receives information from all parts of the
network, regardless of their level of abstraction. This enables GloNet to
self-regulate information flow during training, reducing the influence of
less effective deeper layers, and allowing for stable training irrespective of
network depth. This paper details GloNet’s design, its theoretical basis,
and a comparison with existing similar architectures. Experiments show
GloNet’s self-regulation ability and resilience to depth-related learning
challenges, like performance degradation. Our findings suggest GloNet
as a strong alternative to traditional architectures like ResNets.

Keywords: Neural Networks - Deep Learning - Skip Connections

1 Introduction

Deep learning’s success in Al is largely due to its hierarchical representation of
data, with initial layers learning simple features and deeper ones learning more
complex, nonlinear transformations of these features [3]. Increasing depth should
enhance learning, but sometimes it leads to performance issues [4,9]. Techniques
like normalized initialization [15,9,21,10] and normalization layers [14,1] enable
up to 30-layer deep networks, but performance degradation persists at greater
depths without skip connections. This issue, detailed in the original ResNet
paper [11], stems from the fact that learning identity maps is not easy for a
deeply nonlinear layer. ResNet idea is to focus on learning nonlinear “residual”
information, with a backbone carrying the identity map. This brilliant solution
has been key in training extremely deep networks that, when weight-sharing and
batch normalization are used, can scale up to thousands of layers.

Deeper neural networks should not experience performance degradation. The-
oretically, a deeper network could match the performance of an n-layer network
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by similarly learning features Gy, ..., G, in its initial layers, then minimizing the
impact of additional layers. With this ability to self-requlate, such a network
could effectively be “infinitely deep”. However, even with ResNet architectures,
performance degradation persists beyond a certain depth, see Figure 5b or [7].
This issue can be due to various factors, see for instance [9,23,17], and may partly
arise from the inability of modern architectures to self-regulate their depth. Our
paper introduces a novel technique to enable self-regulation in neural network
architectures, overcoming these depth-related performance challenges.

Novel Contributions. The main contribution of this paper is introducing
and testing GloNet, an explainable-by-design layer that can be superimposed
on any neural network architecture, see Section 2. GloNet’s key feature is its
capacity to self-regulate information flow during training. It achieves this by
reducing the influence of the deepest layers to a negligible level, thereby making
the training more stable, preventing issues like vanishing gradients, and making
the network trainable irrespective of its depth, see Section 5.

This self-regulation capabilities of GloNet lead to several significant benefits:

1. Faster training: GloNet trains in half the ResNet time while achieving
comparable performance. Beyond the depth threshold where ResNet begins
to degrade, GloNet trains in less than half the time and outperforms ResNet.

2. ResNet alternative: The inability of ResNet-based architectures to self-
regulate depth makes GloNet a preferable option, particularly for applica-
tions requiring very deep architectures.

3. No NAS needed: GloNet networks inherently find their effective depth,
eliminating the need for computationally expensive Network Architecture
Search methods to determine optimal network depth.

4. More controllable efficiency /performance trade-off: Layers can be se-
lectively discarded to boost efficiency, allowing a controlled trade-off between
efficiency and performance, optimizing the network for specific requirements.

2 Notation and Model Definition

A feedforward neural network is described iteratively by a sequence of L blocks:
xe+1 = Ge(xe), £=0,...,L -1, (1)

where x( denotes the input vector, and x4 is the output from the ¢-th block.
In this context, a “block” is a modular network unit, representing a broader
concept than a traditional “layer”. Each block function G, typically merges a
non-linearity, such as ReLU, with an affine transformation, and may embody
more complex structures, like the residual blocks in ResNet.

At the end of the sequence (1), a classification or regression head # is applied
to xy,. For instance, a convolutional architecture could use a head with average
pooling and a fully connected classifier. The fundamental principle in deep learn-
ing is that Gy, ..., G,_1 hierarchically extract meaningful features from the input
Xg, that can then be leveraged by computing the output of the network:

output = H(xpr).
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When the blocks in (1) are simple layers like an affine map followed by a
non-linearity (this description comprises, for instance, fully connected and con-
volutional neural networks), all features extracted at different depths are ex-
posed to the head by a single feature vector xj, that has gone through several
non-linearities. This fact leads to several well-known drawbacks, like vanishing
gradients or difficulty in learning when the task requires more direct access to
low-level features. When using ReL'U and shared biases, some low-level informa-
tion could actually be destroyed. Several excellent solutions have been proposed
to these drawbacks, like for instance residual networks [11,12], DenseNets [13],
and preactivated units with non-shared biases [17].

We propose an alternative solution: a modification to (1), consisting of a sim-
ple layer between the feature-extraction sequence and the head, computing the
sum of every feature vector. The architecture is designed to receive information
uniformly from all parts of the network, regardless of their level of abstraction:

xe41 = Ge(x¢), €=0,...,L—1

L L-1
X141 = D1 Xe =Yg Ge(xe) (2)
output = H(xp+1)

When feature vectors have different dimensions, adaptation to a common
dimension is required before the sum, as happens in ResNet. If x, € R™¢, one can
use embeddings in R™@{"} to maximally preserve information, and embeddings
or projections to R™% to maintain the same parameters for the head. We refer
to the additional layer in (2) as a GloNet layer, because all the features x, that
without GloNet would be preserved only “locally” up to the next xp11 = Go(xy¢),

M o, 2 L
appear now in the “global” feature vector xr+1 = Y ,_; X, as summands.

Remark 1 (Theoretical support for GloNet self-regulation). GloNet provides skip
connections solely to the head, and intermediate blocks are not required to learn
a residual map, see (2) and Figure 1. This ensures direct and simultaneous back-
propagation pathways from each block, enabling uniform information distribu-
tion across the network to the head. Due to SGD-like training’s preference for
shorter paths [25,26,16], GloNet is expected to accumulate information mostly
in the initial blocks rather than the latter ones, by reducing the influence of the
deepest layers to a negligible level. Consequently, GloNet self-regulates its depth
during training, rendering it akin to an “infinitely deep” architecture. Empirical
evidence supporting this claim is presented in Section 5.

Remark 2 (Explainability-by-design). Given the linearity of the GloNet layer,
the global feature vector xy 1 provides the contribution that each layer makes
to the neural network’s prediction. In a feedforward neural network, GloNet
enables the analysis of an ensemble of networks represented by the outputs of
each network block. This ensemble, comprising blocks (G¢)e—o.... k, functions as
individual neural networks, with GloNet integrating their outputs through a
linear (currently unweighted) combination. This architecture allows each sub-
network to specialize in learning features at varying levels of granularity, from
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GloNet

baseline

Fig.1: On the left, a 3-blocks neural network followed by a classification head.
On the right, the same architecture with GloNet modification in red.

low-level in early blocks to more complex, large-scale features in later blocks.
The linear nature of the GloNet layer facilitates the attribution of importance
scores to these features, effectively creating an ’explainable-by-design’ tool [g].

3 Related Work

In a ResNet with an activation-free backbone, also known as ResNetv2 [12],
blocks G, are defined as Id + F;, where Id is the skip connection and Fy is the
“residual block”, computing two times Conv o ReLU o BN, where BN is batch
normalization. Unrolling the ResNetv2 equation x4 = x4 + F¢(x¢) from any
block output x; (see [12, Equation 4]) gives:

L—-1

XL =%¢+ Y Filxi) (3)

=0

This equation shows that ResNet, much like GloNet, passes the output x, of
each block directly to the head. However, a key distinction lies in how the head
accesses these outputs: ResNet requires distinct pathways for simultaneous access
to different outputs, whereas GloNet’s head achieves simultaneous access to each
output via the GloNet layer. This unique capability of GloNet may contribute
to its additional features compared to ResNetv2, as explored in Section 5.
Moreover, GloNet is faster than ResNet (not requiring batch normalization),
and can be seen as an ensemble computing the sum of models of increasing
complexity, giving an explainable-by-design model (differently from ResNet).
Unlike DenseNet [13], aggregating each block with all subsequent blocks
through concatenation, GloNet connects only to the last block, with summa-
tion for aggregation. This approach avoids the parameter explosion given by
concatenation in DenseNet, and maintains the original complexity of the model.
Finally, GloNet can be viewed as a network with early exits at every block,
adapted and aggregated before the head. See [241,18,19] for the early exit idea.
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4 TImplementing GloNet

Implementing GloNet within a certain architecture may not always be as straight-
forward as described in Section 2. In this Section we describe how GloNet can
be implemented in common scenarios.

GloNet and Skip Connections. If the original architecture includes skip
connections (such as ResNet or DenseNet), these should be removed and re-
placed with the GloNet connection. Otherwise, putting GloNet on top of skip
connections, training would not converge as we would be adding the identity to
the output multiple times. Note that GloNet provides only skip connections to
the GloNet layer, and does not ask the blocks to learn a residual map.

GloNet and Batch Normalization. Batch normalization plays a major
role in enhancing and stabilizing neural network training by normalizing the
inputs of each block. Its positive impact is widely acknowledged, though the
specific mechanisms of its benefits are still debated [14,20]. Despite these advan-
tages, batch normalization poses challenges, particularly in its interaction with
GloNet. GloNet is designed to dynamically regulate the outputs of different
blocks, based on their contribution to the task. It makes negligible the outputs
of deeper blocks, a strategy that conflicts with the objectives of batch normaliza-
tion, which strives to maintain a consistent mean and variance for block inputs.
Consequently, batch normalization, and similarly layer normalization, should be
removed prior to the GloNet layer’s aggregation. GloNet introduces an alterna-
tive form of regularization, which, as we demonstrate in Section 5, is capable of
achieving comparable performances without the need for batch normalization.

GloNet into Residual Networks. Architectures using residual blocks fea-
ture both skip connections and normalization. Once skip connections and nor-
malizations are removed from a ResNetv2 block computing Id + affine map o
ReLUoBNoaffine mapoReLUoBN, one is left with two simpler blocks affine mapo
ReLU, and each of those blocks can potentially be aggregated into the GloNet
layer. In this case, one ResNetv2 block corresponds to two simpler blocks. This
is what we do in this paper, and for this reason when GloNet has n blocks, its
equivalent ResNetv2 architecture has n/2 blocks.

GloNet into Vision Transformers. When using more complex architec-
tures like transformers, several different choices can be made, each one poten-
tially affecting the final performance of the GloNet-enhanced model. In this
initial exploration of GloNet, we propose a straightforward integration with a
Vision Transformer (ViT) [6] adapted to CIFAR-10. The image is segmented into
4x4 patches, its class encoded, and then concatenated with the patch encoding
and a positional embedding. This series is then fed into a cascade of n encoders
with 4 attention heads each, which are accumulated into a GloNet layer, and
passed to a classification head. In our experiment, we compared n = 4,5 and 6.

5 Experiments

In this section we provide experiments supporting the core claims of our paper, as
stated in the Introduction. In particular, we focus on showing that GloNet trains
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much faster than ResNet, that GloNet performances are on par with ResNet’s
ones, that GloNet can self-regulate its depth, that GloNet does not need batch
normalization, and that GloNet is virtually immune to depth-related problems.
All the experiments can be reproduced using the source code provided at [5].

SGEMM Fully Connected Regression. We experimented with a regres-
sion task from the UCI repository [2,22], focused on predicting the execution
time of matrix multiplication on an SGEMM GPU kernel. See [2,22] for details
on this task and SGEMM dataset.

Since GloNet has skip connections, to obtain a fair comparison we used a
ResNetv2-like baseline. For comparison, we used also a vanilla baseline, iden-
tical to the ResNetv2 baseline but without skip connections. Moreover, since
GloNet does not use batch normalization (in fact, GloNet self-regulation capa-
bilities can be tampered by normalization, see Section 4), we also experimented
with a vanilla and a ResNetv2 baseline with the BN layer removed. GloNet and
the corresponding baselines (denoted by vanilla, ResNetv2, vanilla-no-BN, and
ResNetv2-no-BN in figures) have a similar amount of parameters, the only dif-
ference being given by the trainable BN parameters. All blocks have 16 units.
All models starts with a linear layer mapping the 14-dimensional input to RS,
and ends with the head, a linear layer with 1 unit. GloNet models have an addi-
tional GloNet layer before the head with no additional parameters. The number
of blocks ranges in [10, 24, 50, 100, 200], respectively (halved for the ResNets
because every block is twice the layers of the corresponding non-ResNet model).

For training, we used MSE loss, L2-regularization with a coefficient of 10~°
(we also tried 10~* without improvements), Adam optimizer with a batch size
of 1024, learning rate set to 0.01, He normal initializer for weights, and zero
initializer for biases. We trained all models for 200 epochs, the point at which
baselines plateaued, potentially favoring them over GloNet. The first thing to
notice is that with GloNet training takes almost half or less than half the time
of ResNet, see Table 1. This is because GloNet, differently from ResNet, does
not need batch normalization.

Table 1: Average epoch’s training time in seconds at different depths, for GloNet
and its equivalent ResNetv2 baseline, on SGEMM regression task.

architecture depth
10 24 50 100 200 600 1000
ResNetv2 42 65 96 147 231 410 675
Glonet 273955 86 121 175 289

After 200 training epochs, we compared the best test errors and learning
curves across different block configurations, see Figure 2 for learning curves and
Table 2 for best test errors. At 200 blocks, GloNet surpassed ResNet in both
best test error and learning curve shape. See the caption of Figure 2 for details
on the results of this experiment.
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10 blocks 24 blocks 50 blocks

Test MSE

100 blocks 200 blocks

ResNet
GloNet
ResNet-no-BN
vanilla
vanilla-no-BN

Test MSE

Epoch

Fig.2: Test errors while training for 200 epochs GloNet and four corresponding
baselines at different depths on SGEMM. Starting at 24 blocks, GloNet and
ResNetv2 outperform vanilla, as expected due to skip connections. At 50 and
100 blocks, both ResNetv2 and GloNet show depth resilience, with ResNetv2
slightly leading in best test error. ResNetv2-no-BN exhibits significantly higher
error, highlighting ResNetv2’s reliance on batch normalization. At 100 blocks
GloNet curve shows a markedly higher curvature than ResNetv2. At 200 blocks,
GloNet outperforms ResNetv2 in best test error and curve shape.

The training shapes in Figure 2 suggested a unique aspect of GloNet not
present in the ResNetv2 baseline. GloNet’s training was unaffected by the in-
creasing depth, as shown by the shape of the learning curve that remained con-
sistent whether the network had 10, 24, 50, 100, or 200 blocks. On the contrary,
ResNet learning curve became flatter when depth is increasing.

To further explore this feature, GloNet was tested with even deeper models
(600 and 1000 blocks), and compared against the corresponding ResNetv2 base-
line. Even at these substantial depths, GloNet’s learning curve maintained its
shape, as shown in Figure 3. Moreover, GloNet’s performance remained stable
across these varying depths, maintaining a best test error of around 0.02 regard-
less of the number of blocks (10, 24, 50, 100, 200, 600, or 1000), see Table 2.

In contrast, ResNet’s showed a clear decline as the network depth increased.
While its best test error remained around 0.02 up to 200 blocks, this error
increased to 0.04 and almost 0.05 at 600 and 1000 blocks, respectively, see again
Table 2. As happened with 100 and 200 blocks, the ResNet learning curve was
flatter, diverging from GloNet’s more consistent curve shape as depth increased.
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—— ResNet —— GloNet

600 blocks 1000 blocks

MSE (log-scale)

0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Epoch

Fig. 3: Test MSE learning curves of GloNet (orange) with 600 blocks (left) and
1000 blocks (right), against the equivalent ResNetv2 baseline (blue). Comparing
with Figure 2 shows these substantial depths severely degrade ResNet perfor-
mance, but do not affect at all GloNet performance.

GloNet accumulates information in the first few blocks and uses only the
required capacity for a specific task and architecture, leading to minimal output
from subsequent blocks, see Remark 1. This is not observed in baseline mod-
els with or without batch normalization, see Figure 4, and likely contributes
to GloNet’s stable performance as network depth increases, in contrast to the
degradation observed in the baseline models under similar depth conditions.

MNIST Fully Connected Classification. To confirm that GloNet au-
tomatic choice of optimal depth and GloNet training resilience to depth were
not associated to the particular SGEMM regression task, we performed a series
of experiments with identical architecture on a completely different task: image
classification with MNIST. Although using fully connected architectures for im-
age classification is generally not the best approach, with this task we have been
able to significantly increase the number of input features, which theoretically
could pose a greater challenge to models that are not very deep.

Table 2: Best test errors across different network depths.

architecture depth
10 24 50 100 200 600 1000
vanilla 0.023 0.030 1.997 2.750 2.985 - -
vanilla-no-BN  0.018 0.021 2.624 2.624 2.624 - -
ResNetv2 0.018 0.019 0.020 0.019 0.027 0.040 0.048

ResNetv2-no-BN 0.024 0.026 0.029 0.033 0.189 - -
Glonet 0.021 0.021 0.020 0.022 0.021 0.022 0.022




GloNets: Globally Connected Neural Networks 9
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Fig. 4: Block’s outputs L1 norm, 100 blocks, 200 epochs, SGEMM. Mean and
standard deviation from 5000 samples. GloNet (d) uses only the first 12 blocks,
and achieves the least variance, indicating a more consistent learning of features.
In ResNetv2 (c) all blocks give a similar contribution, as expected because of BN.
ResNetv2-no-BN (b) uses all outputs in different ways, because of the residual
maps mixed with the skip connections. The baseline vanilla-no-BN (a) shows the
opposite behavior to GloNet, emphasizing late outputs and diminishing earlier
ones, indicating shorter gradient paths to the last blocks.

The only difference from the architecture used in SGEMM is the head, which
in this case is a fully connected layer followed by a SoftMax layer on 10 classes.
We tested architectures with 6, 10, 24, 50, 60, 80, 100, and 200 blocks for GloNet
and a convolutional baseline, halved for the corresponding ResNet baseline. Fig-
ure Ha shows that GloNet automatically chooses the optimal number of blocks.
However, notice that in this case, differently from Figure 4c, ResNetv2 outputs
show a decreasing shape. This is probably due to the trainable parameters of
the batch normalization, that in this case are able to force a small mean and
variance on the last blocks. This indicates that also with batch normalization
the network struggles to self-regulate its depth. Figure 5Hb confirms GloNet re-
silience to an increasing depth, and shows a severe performance degradation of
ResNetv2 when depth goes above 50 blocks.

CIFARI10 Convolutional Classification. We further experimented with
a ResNet20 on CIFAR10. ResNet20 is a ResNetv2 with 3 stages of 3 residual
blocks each, described in [11]. We compared a ResNet20 architecture with its
GloNet version, obtained by removing the backbone and adding a GloNet layer
before the classification head, as detailed in Section 4. We trained for 200 epochs.
Learning curves are completely overlapping, with best test errors 91.12% and
91.08% for ResNet and GloNet respectively. This experiment shows that also
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L1 norm of block's output ; Accuracy vs. Number of Blocks
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Fig.5: (a) Block’s outputs L1 norm, GloNet (orange), and ResNetv2 (blue),
50 blocks, 200 epochs, MNIST. Mean and standard deviation from 5000 sam-
ples. GloNet uses only the first 4 blocks. In ResNetv2, all blocks give a sig-
nificant contribution, as expected because of BN. (b) Accuracies of GloNet
(orange), ResNetv2 (blue), and vanilla (green), 200 epochs, MNIST, against
6,10, 24, 50, 60, 80, 100, and 200 blocks. GloNet is consistent across depths, while
vanilla and ResNetv2 show a rapid decline with increased depth.

with convolutional architectures, GloNet performs on par with the traditional
ResNet architecture, despite taking half the time for training.

GloNet for Vision Transformer Classification. A Visual Transformer
(ViT) is a transformer applied to sequences of feature vectors extracted from im-
age patches [6]. The n encoders outputs can be accumulated into a GloNet layer
before going to the classification head, see Section 4 for details. In this experi-
ment we compare ViT, with and without GloNet, on CIFAR-10, with 4,5 and
6 encoders. Training plateaus at around 500 epochs, and final accuracies align
with those from literature. With 4 and 6 encoders, accuracies overlap for ViT
and GloNet-ViT. With 5 encoders, GloNet-ViT appears to improve over ViT,
see Figure 6b. ViT best accuracies are 0.707, 0.709, and 0.725, and GloNet-ViT
best accuracies are 0.709, 0.727, and 0.729, for 4, 5, and 6 encoders, respectively.
This is a proof-of-concept experiment showcasing the robustness and versatility
of GloNet for complex architectures like transformers.

Controllable Efficiency/Performance Trade-Off. In an experiment to
demonstrate how GloNet can be used to choose an optimal efficiency /performance
trade-off, we trained a 50-block GloNet fully connected architecture on MNIST
for 200 epochs. After training, we progressively removed the last block, adjusted
accordingly the GloNet layer to sum fewer blocks, and evaluated the shallower
model without retraining. As shown in Figure 6a, removing up to 42 blocks
did not significantly impact accuracy, illustrating GloNet’s ability to balance
efficiency and performance.
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Error and Output L1 Norm vs. Number of Layers 5 encoders
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Fig.6: (a) Block’s outputs L1 norm of GloNet (red), smaller networks perfor-
mance (blue), 50 blocks, 200 epochs, MNIST. Performance plateaus after block
eight. (b) Accuracy of ViT (blue), and GloNet-ViT (orange) with 5 encoders.
Best accuracies 0.709, 0.727 for ViT, GloNet-ViT, respectively.

6 Conclusions

We introduce GloNet, a method designed to augment existing architectures with-
out adding complexity or reducing performance. It effectively renders the archi-
tecture resilient to depth-related learning issues. As an alternative to ResNet,
GloNet offers advantages, without any disadvantage: it achieves similar training
outcomes in nearly half the time at depths where ResNet remains stable, and
maintains consistent performance at greater depths where ResNet falters.
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