Skip to main content

Variational Perspective on Fair Edge Prediction

  • Conference paper
  • First Online:
Advances in Intelligent Data Analysis XXII (IDA 2024)

Abstract

Algorithmic fairness has been of great interest in the machine learning community and more recently in the graph context. In this paper, we address the problem of dyadic fairness where the task at hand is edge prediction, and the population of interest (nodes) is divided into a protected and a non-protected group, e.g. men and women. The goal is then to ensure that there should be no statistically significant difference in the prediction outcomes between the two groups, after accounting for any relevant factors that may impact the outcome. To proceed, we design a novel loss based on the variational information bottleneck principle to learn individual node representation while controlling a given level of dyadic fairness. The optimization of the loss is done with a Graph Neural Network. Experiments carried out on several real-world datasets confirmed the capacity of the proposed method, to maintain high accuracy on the edge prediction task while significantly reducing potential bias.

This work was partially funded by the French National Research Agency (ANR) in the context of the FAMOUS project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    see https://github.com/AntoineGourru/leave for code, and experimental details..

  2. 2.

    https://github.com/brandeis-machine-learning/FairAdj.

  3. 3.

    https://github.com/AntoineGourru/leave.

References

  1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 us election: divided they blog. In: International Workshop on Link Discovery, pp. 36–43 (2005)

    Google Scholar 

  2. Agarwal, C., Lakkaraju, H., Zitnik, M.: Towards a unified framework for fair and stable graph representation learning. In: UAI, pp. 2114–2124. PMLR (2021)

    Google Scholar 

  3. Alemi, A., Fischer, I., Dillon, J., Murphy, K.: Deep variational information bottleneck. In: International Conference on Learning Representations (2017)

    Google Scholar 

  4. Bose, A., Hamilton, W.: Compositional fairness constraints for graph embeddings. In: ICML, pp. 715–724 (2019)

    Google Scholar 

  5. Buyl, M., Bie, T.D.: Debayes: a bayesian method for debiasing network embeddings. In: International Conference on Machine Learning, pp. 2537–2546 (2020)

    Google Scholar 

  6. Buyl, M., Bie, T.D.: The kl-divergence between a graph model and its fair i-projection as a fairness regularizer. In: ECML-PKDD, pp. 351–366 (2021)

    Google Scholar 

  7. Choudhary, M., Laclau, C., Largeron, C.: A survey on fairness for machine learning on graphs (2022). https://arxiv.org/abs/2205.05396

  8. Current, S., He, Y., Gurukar, S., Parthasarathy, S.: Fairegm: fair link prediction and recommendation via emulated graph modification. In: EAAMO (2022)

    Google Scholar 

  9. Dai, E., Wang, S.: Say no to the discrimination: learning fair graph neural networks with limited sensitive attribute information. In: WSDM, pp. 680–688 (2021)

    Google Scholar 

  10. Dong, Y., Liu, N., Jalaian, B., Li, J.: EDITS: modeling and mitigating data bias for graph neural networks. In: Web Conference, pp. 1259–1269 (2022)

    Google Scholar 

  11. Dong, Y., Ma, J., Wang, S., Chen, C., Li, J.: Fairness in graph mining: a survey. IEEE Trans. Knowl. Data Eng. 35(10), 10583–10602 (2023)

    Google Scholar 

  12. Fisher, J., Mittal, A., Palfrey, D., Christodoulopoulos, C.: Debiasing knowledge graph embeddings. In: Proceedings of EMNLP, pp. 7332–7345 (2020)

    Google Scholar 

  13. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of ACM SIGKDD KDD, pp. 855–864 (2016)

    Google Scholar 

  14. Hofstra, B., Corten, R., Van Tubergen, F., Ellison, N.B.: Sources of segregation in social networks: a novel approach using facebook. Am. Sociol. Rev. 82(3), 625–656 (2017)

    Google Scholar 

  15. Kang, B., Lijffijt, J., De Bie, T.: Conditional network embeddings. In: ICLR (2019)

    Google Scholar 

  16. Khajehnejad, A., Khajehnejad, M., Babaei, M., Gummadi, K.P., Weller, A., Mirzasoleiman, B.: Crosswalk: fairness-enhanced node representation learning. AAAI 36(11), 11963–11970 (2022)

    Article  Google Scholar 

  17. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. Proceedings of the International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  18. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  19. Laclau, C., Redko, I., Choudhary, M., Largeron, C.: All of the fairness for edge prediction with optimal transport. In: AISTATS, pp. 1774–1782. PMLR (2021)

    Google Scholar 

  20. Li, P., Wang, Y., Zhao, H., Hong, P., Liu, H.: On dyadic fairness: Exploring and mitigating bias in graph connections. In: ICLR (2021)

    Google Scholar 

  21. Li, Y., Wang, X., Ning, Y., Wang, H.: FairLP: towards fair link prediction on social network graphs. Proc. Int. AAAI Conf. Web Soc. Media 16, 628–639 (2022)

    Google Scholar 

  22. Masrour, F., Wilson, T., Yan, H., Tan, P., Esfahanian, A.: Bursting the filter bubble: fairness-aware network link prediction. AAAI 34(01), 841–848 (2020)

    Article  Google Scholar 

  23. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. 54(6), 1–35 (2021)

    Google Scholar 

  24. Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67(2) (2003). https://doi.org/10.1103/physreve.67.026126

  25. Oh, S.J., Murphy, K.P., Pan, J., Roth, J., Schroff, F., Gallagher, A.C.: Modeling uncertainty with hedged instance embeddings. In: ICLR (2018)

    Google Scholar 

  26. Oneto, L., Navarin, N., Donini, M.: Learning deep fair graph neural networks. In: European Symposium on Artificial Neural Networks, pp. 31–36 (2020)

    Google Scholar 

  27. Palowitch, J., Perozzi, B.: Monet: debiasing graph embeddings via the metadata-orthogonal training unit. In: ASONAM (2020)

    Google Scholar 

  28. Rahman, T.A., Surma, B., Backes, M., Zhang, Y.: Fairwalk: Towards fair graph embedding. In: IJCAI, pp. 3289–3295 (2019)

    Google Scholar 

  29. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding. J. Complex Netw. 9(2), cnab014 (2021)

    Google Scholar 

  30. Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: birds of a feather, from statistical descriptors to parametric models. In: CIKM, pp. 1325–1334 (2020)

    Google Scholar 

  31. Saxena, A., Fletcher, G., Pechenizkiy, M.: Fairsna: algorithmic fairness in social network analysis (2022). https://arxiv.org/abs/2209.01678

  32. Spinelli, I., Scardapane, S., Hussain, A., Uncini, A.: Fairdrop: biased edge dropout for enhancing fairness in graph representation learning. In: TAI (2021)

    Google Scholar 

  33. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  34. Wang, N., Lin, L., Li, J., Wang, H.: Unbiased graph embedding with biased graph observations. In: Web Conference, pp. 1423–1433 (2022)

    Google Scholar 

  35. Wang, Y., Zhao, Y., Dong, Y., Chen, H., Li, J., Derr, T.: Improving fairness in graph neural networks via mitigating sensitive attribute leakage. In: KDD (2022)

    Google Scholar 

  36. Zhang, T., et al.: Fairness in graph-based semi-supervised learning. Knowl. Inf. Syst. 65(2), 543–570 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Gourru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gourru, A., Laclau, C., Choudhary, M., Largeron, C. (2024). Variational Perspective on Fair Edge Prediction. In: Miliou, I., Piatkowski, N., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XXII. IDA 2024. Lecture Notes in Computer Science, vol 14641. Springer, Cham. https://doi.org/10.1007/978-3-031-58547-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58547-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58546-3

  • Online ISBN: 978-3-031-58547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics