Skip to main content

Performance Analysis of ORB-SLAM in Foggy Environments

  • Conference paper
  • First Online:
Robot 2023: Sixth Iberian Robotics Conference (ROBOT 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 976))

Included in the following conference series:

  • 12 Accesses

Abstract

Vision based localization approaches, be Simultaneous Localization and Mapping (SLAM) or Visual Odometry (VO), rely heavily on distinct features detectable and trackable across different frames. Therefore, state of the art approaches utilize features that are scale-invariant, visible from different points of view, and are also tolerant to changes in light. However, visibility of the feature points are affected also by haze, mist or fog, which are atmospheric phenomena that vary across the day, effectively hindering the performance of vision based SLAM/VO approaches. In this work, we study the effect of fog on SLAM, particularly ORB-SLAM. We analyze the changes in the quality and quantity of the features with varying fog levels, as well as the quality of the eventual path generated by SLAM. We also show that performance of SLAM in foggy conditions can be improved by defogging the images, though only to a limited extent depending on the amount of fog in the environment.

This work was supported by AM2R project “Mobilizing Agenda for business innovation in the Two Wheels sector” funded by PRR - Recovery and Resilience Plan and by the Next Generation EU Fund, under reference C644866475-00000012 | 7253; and ILAF project “Intelligent Logistic Autonomous Fleet”, under Grant POCI-01-0247-FEDER-072534.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Sammaraie, M.F.: Contrast enhancement of roads images with foggy scenes based on histogram equalization. In: 2015 10th International Conference on Computer Science & Education (ICCSE), pp. 95–101 (2015)

    Google Scholar 

  2. Aldibaja, M., Suganuma, N., Yoneda, K., Yanase, R.: Challenging environments for precise mapping using GNSS/INS-RTK systems: reasons and analysis. Remote Sens. 14(16), 4058 (2022)

    Google Scholar 

  3. Ancuti, C.O., Ancuti, C.: Single image dehazing by multi-scale fusion. IEEE Trans. Image Process. 22(8), 3271–3282 (2013)

    Google Scholar 

  4. Anwar, M.I., Khosla, A.: Vision enhancement through single image fog removal. Eng. Sci. Technol. Int. J. 20(3), 1075–1083 (2017)

    Google Scholar 

  5. Bagloee, S.A., Tavana, M., Asadi, M., Oliver, T.: Autonomous vehicles: challenges, opportunities, and future implications for transportation policies. J. Mod. Transp. 24(4), 284–303 (2016)

    Article  Google Scholar 

  6. Berman, D., Treibitz, T., Avidan, S.: Non-local Image Dehazing. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1674–1682. IEEE, Las Vegas, NV, USA (2016)

    Google Scholar 

  7. Campos, C., Elvira, R., Rodríguez, J.J.G., M. Montiel, J.M., D. Tardós, J.: ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap slam. IEEE Trans. Robot. 37(6), 1874–1890 (2021)

    Google Scholar 

  8. Chen, W.T., Fang, H.Y., Ding, J.J., Kuo, S.Y.: PMHLD: patch map-based hybrid learning DehazeNet for single image haze removal. IEEE Trans. Image Process. 29, 6773–6788 (2020)

    Google Scholar 

  9. Dissanayake, M., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A solution to the simultaneous localization and map building (slam) problem. IEEE Trans. Robot. Autom. 17(3), 229–241 (2001)

    Article  Google Scholar 

  10. Dogru, S., Marques, L.: Evaluation of an automotive short range radar sensor for mapping in orchards. In: 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 78–83 (2018)

    Google Scholar 

  11. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part i. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  12. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32(11), 1231–1237 (2013)

    Google Scholar 

  13. Gomez-Ojeda, R., Moreno, F., Scaramuzza, D., Gonzalez-Jimenez, J.: PL-SLAM: a stereo slam system through the combination of points and line segments. IEEE Trans. Rob. 35(3), 734–746 (2019)

    Article  Google Scholar 

  14. Harish Babu, G., Venkatram, N.: A survey on analysis and implementation of state-of-the-art haze removal techniques. J. Vis. Commun. Image Represent. 72, 102912 (2020)

    Google Scholar 

  15. Kaiming, H., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1956–1963 (2009)

    Google Scholar 

  16. Kuutti, S., Fallah, S., Katsaros, K., Dianati, M., Mccullough, F., Mouzakitis, A.: A survey of the state-of-the-art localization techniques and their potentials for autonomous vehicle applications. IEEE Internet Things J. 5(2), 829–846 (2018)

    Article  Google Scholar 

  17. Lim, H., Jeon, J., Myung, H.: UV-SLAM: unconstrained line-based slam using vanishing points for structural mapping. IEEE Robot. Autom. Lett. 7(2), 1518–1525 (2022)

    Article  Google Scholar 

  18. Lu, J., Fang, Z., Gao, Y., Chen, J.: Line-based visual odometry using local gradient fitting. J. Vis. Commun. Image Represent. 77, 103071 (2021)

    Google Scholar 

  19. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI’81: 7th International Joint Conference on Artificial Intelligence, vol. 2, pp. 674–679. Vancouver, Canada (1981)

    Google Scholar 

  20. Middleton, W.E.K.: Vision through the Atmosphere. In: Bartels, J. (ed.) Geophysik II / Geophysics II. HPEP, vol. 10 / 48, pp. 254–287. Springer, Heidelberg (1957). https://doi.org/10.1007/978-3-642-45881-1_3

    Chapter  Google Scholar 

  21. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: a factored solution to the simultaneous localization and mapping problem. In: Proceedings of the National Conference on Artificial Intelligence (2002)

    Google Scholar 

  22. Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Rob. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  23. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Google Scholar 

  24. Qin, T., Li, P., Shen, S.: VINS-Mono: a robust and versatile monocular visual-inertial state estimator. IEEE Trans. Rob. 34(4), 1004–1020 (2018)

    Article  Google Scholar 

  25. Scaramuzza, D., Fraundorfer, F.: Visual odometry, part I: the first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  26. Schaul, L., Fredembach, C., Süsstrunk, S.: Color image dehazing using the near-infrared. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 1629–1632 (2009). ISSN: 2381–8549

    Google Scholar 

  27. Shi, J., Tomasi.: Good features to track. In: 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994). ISSN: 1063-6919

    Google Scholar 

  28. Tarel, J.P., Hautiere, N., Caraffa, L., Cord, A., Halmaoui, H., Gruyer, D.: Vision enhancement in homogeneous and heterogeneous fog. Neurocomputing 4(2), 6–20 (2012)

    Google Scholar 

  29. Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D.: Visual-inertial mapping with non-linear factor recovery. IEEE Robot. Autom. Lett. 5(2), 422–429 (2020)

    Article  Google Scholar 

  30. Yaqoob, I., Khan, L.U., Kazmi, S.M.A., Imran, M., Guizani, N., Hong, C.S.: Autonomous driving cars in smart cities: recent advances, requirements, and challenges. IEEE Netw. 34(1), 174–181 (2020)

    Google Scholar 

  31. Yin, S., Wang, Y., Yang, Y.H.: Attentive U-recurrent encoder-decoder network for image dehazing. Neurocomputing 437, 143–156 (2021)

    Article  Google Scholar 

  32. Zhang, J., Tao, D.: FAMED-Net: a fast and accurate multi-scale end-to-end dehazing network. IEEE Trans. Image Process. 29, 72–84 (2020)

    Google Scholar 

  33. Zhang, L., Koch, R.: An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. J. Vis. Commun. Image Represent. 24(7), 794–805 (2013)

    Article  Google Scholar 

  34. Zhao, D., Xu, L., Ma, L., Li, J., Yan, Y.: Pyramid global context network for image dehazing. IEEE Trans. Circ. Syst. Video Technol. 31(8), 3037–3050 (2021)

    Google Scholar 

  35. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedat Dogru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singéis, R., Dogru, S., Marques, L. (2024). Performance Analysis of ORB-SLAM in Foggy Environments. In: Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M. (eds) Robot 2023: Sixth Iberian Robotics Conference. ROBOT 2023. Lecture Notes in Networks and Systems, vol 976. Springer, Cham. https://doi.org/10.1007/978-3-031-58676-7_17

Download citation

Publish with us

Policies and ethics