Skip to main content

Adaptive Bayesian Optimization for Robotic Pushing of Thin Fragile Deformable Objects

  • Conference paper
  • First Online:
Robot 2023: Sixth Iberian Robotics Conference (ROBOT 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 976))

Included in the following conference series:

Abstract

Robotic manipulation of deformable objects is challenging due to the great variety of materials and shapes. This task is even more complex when the object is also fragile, and the allowed amount of deformation needs to be constrained. For the goal of driving a thin fragile deformable object to a target 2D position and orientation, we propose a manipulation method based on executing planar pushing actions on the object edges with a robotic arm. Firstly, we obtain a probabilistic model through Gaussian process regression, which represents the time-varying deformation properties of the system. Then, we exploit the model in the framework of an Adaptive Bayesian Optimization (ABO) algorithm to compute the pushing action at each instant. We evaluate our proposal in simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agudo, A., Moreno-Noguer, F., Calvo, B., Montiel, J.M.M.: Sequential non-rigid structure from motion using physical priors. IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 979–994 (2016)

    Article  Google Scholar 

  2. Antonova, R., Yang, J., Sundaresan, P., Fox, D., Ramos, F., Bohg, J.: A Bayesian treatment of real-to-sim for deformable object manipulation. IEEE Robot. Autom. Lett. 7(3), 5819–5826 (2022)

    Article  Google Scholar 

  3. Arriola-Rios, V.E., Wyatt, J.L.: A multimodal model of object deformation under robotic pushing. IEEE Trans. Cogn. Dev. Syst. 9(2), 153–169 (2017)

    Article  Google Scholar 

  4. Bauza, M., Rodriguez, A.: A probabilistic data-driven model for planar pushing. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3008–3015 (2017)

    Google Scholar 

  5. Chai, C.Y., Peng, W.H., Tsao, S.L.: Object rearrangement through planar pushing: a theoretical analysis and validation. IEEE Trans. Robot. 38(5), 2703–2719 (2022)

    Article  Google Scholar 

  6. Coumans, E.: Pybullet real-time physics simulation (2010). https://pybullet.org

  7. Cox, D., John, S.: A statistical method for global optimization. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 1241–1246 (1992)

    Google Scholar 

  8. Cuiral-Zueco, I., Karayiannidis, Y., Lopez-Nicolas, G.: Contour based object-compliant shape control. IEEE Robot. Autom. Lett. 8(8), 5164–5171 (2023)

    Article  Google Scholar 

  9. Frank, B., Stachniss, C., Abdo, N., Burgard, W.: Using Gaussian process regression for efficient motion planning in environments with deformable objects. In: Proceedings of the 9th AAAI Conference on Automated Action Planning for Autonomous Mobile Robots, AAAIWS’11-09, pp. 2–7 (2011)

    Google Scholar 

  10. Gao, Z., Elibol, A., Chong, N.Y.: Zero moment two edge pushing of novel objects with center of mass estimation. IEEE Trans. Autom. Sci. Eng. 20(3), 1487–1499 (2023)

    Article  Google Scholar 

  11. Han, L., Zhang, Y., Wang, H.: Vision-based contact point selection for the fully non-fixed contact manipulation of deformable objects. IEEE Robot. Autom. Lett. 7(2), 4368–4375 (2022)

    Article  Google Scholar 

  12. Hu, Z., Sun, P., Pan, J.: Three-dimensional deformable object manipulation using fast online gaussian process regression. IEEE Robot. Autom. Lett. 3(2), 979–986 (2018)

    Article  Google Scholar 

  13. Huang, J., Cai, Y., Chu, X., Taylor, R.H., Au, K.W.S.: Non-fixed contact manipulation control framework for deformable objects with active contact adjustment. IEEE Robot. Autom. Lett. 6(2), 2878–2885 (2021)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv arXiv:1412.6980 (2014)

  15. Langsfeld, J.D., Kabir, A.M., Kaipa, K.N., Gupta, S.K.: Robotic bimanual cleaning of deformable objects with online learning of part and tool models. In: IEEE International Conference on Automation Science and Engineering (CASE), pp. 626–632 (2016)

    Google Scholar 

  16. Lopez-Nicolas, G., Ozgur, E., Mezouar, Y.: Parking objects by pushing using uncalibrated visual servoing. Auton. Robot. 43, 1063–1078 (2019). https://doi.org/10.1007/s10514-018-9782-x

    Article  Google Scholar 

  17. Moya-Lasheras, E., Sagues, C.: Run-to-run control with Bayesian optimization for soft landing of short-stroke reluctance actuators. IEEE/ASME Trans. Mechatron. 25(6), 2645–2656 (2020)

    Article  Google Scholar 

  18. Moza, S.: sahilm89/lhsmdu: Latin hypercube sampling with multi-dimensional uniformity (LHSMDU): speed boost minor compatibility fixes (2020)

    Google Scholar 

  19. Nogueira, J., Martinez-Cantin, R., Bernardino, A., Jamone, L.: Unscented Bayesian optimization for safe robot grasping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1967–1972 (2016)

    Google Scholar 

  20. Nyikosa, F.M., Osborne, M.A., Roberts, S.J.: Bayesian optimization for dynamic problems. arXiv arXiv:1803.03432 (2018)

  21. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  22. Ruggiero, F., et al.: Nonprehensile manipulation of deformable objects: achievements and perspectives from the robotic dynamic manipulation project. IEEE Robot. Autom. Mag. 25(3), 83–92 (2018)

    Article  Google Scholar 

  23. Sanchez, J., Corrales, J.A., Bouzgarrou, B.C., Mezouar, Y.: Robotic manipulation and sensing of deformable objects in domestic and industrial applications: a survey. Int. J. Robot. Res. 37(7), 688–716 (2018)

    Article  Google Scholar 

  24. Stüber, J., Zito, C., Stolkin, R.: Let’s push things forward: a survey on robot pushing. Front. Robot. AI 7, 1–18 (2020)

    Article  Google Scholar 

  25. Sundaram, A.M., Friedl, W., Roa, M.A.: Environment-aware grasp strategy planning in clutter for a variable stiffness hand. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 9377–9384 (2020)

    Google Scholar 

  26. Yin, H., Varava, A., Kragic, D.: Modeling, learning, perception, and control methods for deformable object manipulation. Sci. Robot. 6(54), eabd8803 (2021)

    Article  Google Scholar 

  27. Zhu, J., et al.: Challenges and outlook in robotic manipulation of deformable objects. IEEE Robot. Autom. Mag. 29(3), 67–77 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has received funding from the European Union’s Horizon Europe research and innovation program under grant agreement No. 101070600, project SoftEnable. This work was also supported via projects REMAIN S1/1.1/E0111 (Interreg Sudoe Programme, ERDF), PID 2021-124137OB-I00 and TED2021-130224B-I00 (funded by MCIN/AEI/10.13039/501100011033), projects T45_23R and T73_23R by Gobierno de Aragón, ERDF A way of making Europe and the European Union NextGenerationEU/PRTR. The first author was partially supported by the EU through the European Social Fund (ESF) “Construyendo Europa desde Aragón”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Herguedas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herguedas, R., Sundaram, A.M., López-Nicolás, G., Roa, M.A., Sagüés, C. (2024). Adaptive Bayesian Optimization for Robotic Pushing of Thin Fragile Deformable Objects. In: Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M. (eds) Robot 2023: Sixth Iberian Robotics Conference. ROBOT 2023. Lecture Notes in Networks and Systems, vol 976. Springer, Cham. https://doi.org/10.1007/978-3-031-58676-7_28

Download citation

Publish with us

Policies and ethics