Skip to main content

Design of a Modular Soft Tool for Automatic Seed Sowing

  • Conference paper
  • First Online:
Robot 2023: Sixth Iberian Robotics Conference (ROBOT 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 976))

Included in the following conference series:

  • 14 Accesses

Abstract

Agriculture 4.0, a concept introduced in the last decade, aims to implement all the knowledge gained in the industry into various agricultural tasks, such as weeding and harvesting. Although several task remains challenging due to working in unstructured environments, they have led to the implementation of various automation technologies, including classical robotics. However, this has not been the case with tasks like sowing, where the main problem lies in the handling of small and delicate objects such as seeds, making precise and damage-free manipulation difficult. Soft robotics is emerging as the next evolution of these traditional robotic systems, enabling the manipulation of delicate and precise objects in unstructured environments without bruising them. This article proposes a modular soft tool for the gentle and agile manipulation of seed in the automation of sowing tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Navas, E., Fernández, R., Sepúlveda, D., Armada, M., Gonzalez-de-Santos, P.: Soft grippers for automatic crop harvesting: a review. Sensors 21(8), 2689 (2021). https://doi.org/10.3390/s21082689

    Article  Google Scholar 

  2. Gul, J.Z., et al.: 3D printing for soft robotics - a review. Sci. Technol. Adv. Mater. 19(1), 243–262 (2018). https://doi.org/10.1080/14686996.2018.1431862

    Article  Google Scholar 

  3. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013). https://doi.org/10.1016/j.tibtech.2013.03.002

    Article  Google Scholar 

  4. International Organization for Standardization. https://www.iso.org/standard/75539.html

  5. Cambridge Dictionary dictionary. https://www.cambridge.org/dictionary/english/3-d-printing

  6. Yin, L., Ananthasuresh, G.K.: Design of distributed compliant mechanisms. Mech. Based Des. Struct. Mach. 31(2), 151–179 (2003). https://doi.org/10.1081/SME-120020289

    Article  Google Scholar 

  7. Zhu, B., et al.: Design of compliant mechanisms using continuum topology optimization: a review. Mech. Mach. Theor. 143, 103622 (2020). https://doi.org/10.1016/j.mechmachtheory.2019.103622

    Article  Google Scholar 

  8. Farnell. www.es.farnell.com/multicomp-pro/mp001129/filamento-3d-1-75mm-tpe-natural/dp/3236819

  9. Multicomp Pro. https://multicomp-pro.com/

  10. Creality. https://www.creality3dofficial.eu/

  11. Autodesk. www.autodesk.es/products/inventor/overview?term=1-YEAR&tab=subscription

  12. COMSOL Multiphysics. https://www.comsol.com/

  13. UltiMaker Cura. https://ultimaker.com/software/ultimaker-cura/

  14. YuMI IRB 14000. https://webshop.robotics.abb.com/es/catalog/product/view/id/87/s/dual-arm-yumi-irb-14000-part-handling/category/3/

  15. Murphy, M.D., Midha, A., Howell, L.L.: The topological synthesis of compliant mechanisms. Mech. Mach. Theor. 31(2), 185–199 (1996). https://doi.org/10.1016/0094-114X(95)00055-4

    Article  Google Scholar 

  16. Howell, L.L.: Compliant mechanisms. In: McCarthy, J. (ed.) 21st Century Kinematics: The 2012 NSF Workshop, pp. 189–216. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4510-3_7

  17. Gallego, J.A., Herder, J.: Synthesis methods in compliant mechanisms: an overview. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, January 2009, vol. 49040, pp. 193–214 (2009). https://doi.org/10.1115/DETC2009-86845

  18. Jadhav, M.L., Mohnot, P., Shelake, P.S.: Investigation of engineering properties of vegetable seeds required for the design of pneumatic seeder. Int. J. Curr. Microbiol. Appl. Sci 6(10), 1163–1171 (2017). https://doi.org/10.20546/ijcmas.2017.610.140

    Article  Google Scholar 

  19. Velex, P.: International Gear Conference 2014: 26th–28th August 2014, Lyon. Chandos Publishing (2014). ISBN 9781782421955

    Google Scholar 

  20. Kim, B., et al.: A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. Int. J. Precis. Eng. Manuf. 13, 759–764 (2012). https://doi.org/10.1007/s12541-012-0099-y

    Article  Google Scholar 

  21. Kumar, C.: Fitting Measured Data to Different Hyperelastic Material Models. COMSOL Blog (2015). www.comsol.com/blogs/fitting-measured-data-to-different-hyperelastic-material-models/

  22. Smart Materials. https://www.smartmaterials3d.com/

  23. Imada, Inc. https://imada.com/

  24. Mathad, R.C., Vasudevan, S.N., Patil, S.B., Lokeshappa, B.L.: Precision seed sorting to improve hybridity in eggplant. Seed Technol. 34, 245–248 (2012). https://www.jstor.org/stable/23433402

    Google Scholar 

  25. Perai, S.: Methodology of compliant mechanisms and its current developments in applications: a review. Am. J. Appl. Sci. 4(3), 160–167 (2007). ISSN 1546-9239

    Google Scholar 

  26. Shintake, J., Cacucciolo, V., Floreano, D., Shea, H.: Soft robotic grippers. Adv. Mater. 30(29), 1707035 (2018). https://doi.org/10.1002/adma.201707035

    Article  Google Scholar 

Download references

Acknowledgment

The research leading to these results is part of the I+D+i HortiRobot project (Comprensión visual de la escena y aprendizaje inteligente para la manipulación dual robótica en tareas hortícola)/grant PID2020-116270RB-I00, funded by MCIN/AEI/10.13039/501100011033.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Blanco , Eduardo Navas or Roemi Fernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blanco, K., Navas, E., Emmi, L., Rodriguez-Gonzalez, A.A., Fernandez, R. (2024). Design of a Modular Soft Tool for Automatic Seed Sowing. In: Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M. (eds) Robot 2023: Sixth Iberian Robotics Conference. ROBOT 2023. Lecture Notes in Networks and Systems, vol 976. Springer, Cham. https://doi.org/10.1007/978-3-031-58676-7_29

Download citation

Publish with us

Policies and ethics