Skip to main content

A Cognitive Architecture for Human-Aware Interactive Robot Learning with Industrial Collaborative Robots

  • Conference paper
  • First Online:
Robot 2023: Sixth Iberian Robotics Conference (ROBOT 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 976))

Included in the following conference series:

  • 16 Accesses

Abstract

While industrial collaborative robot programming becomes more and more accessible, building adaptable and modular behaviors is still out of reach for most non-programmer experts. Allowing any human to teach cobots complex and personalized behaviors with natural means of communication would likely ease their acceptability and long-term co-integration in industries of all sizes. In this paper, we present a prototype of robotic cognitive architecture for interactive task learning (ITL) integrating human preferences in a human-robot collaborative industrial context. The architecture is based on integrating connectionist modules, such as deep learning modules, and symbolic semantic graphs, such as behavior trees, for modular skill representations and learning. An experimental validation was made on a real UR10e industrial collaborative robot. The cobot is taught, online and incrementally, a simple task with variations based on human preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://huggingface.co/flair/pos-english.

  2. 2.

    https://tfhub.dev/google/object_detection/mobile_object_localizer_v1/1.

  3. 3.

    https://www.youtube.com/watch?v=EAuLMnQULB0.

References

  1. Aaltonen, I., Salmi, T.: Experiences and expectations of collaborative robots in industry and academia: barriers and development needs. Procedia Manuf. 38, 1151–1158 (2019). https://doi.org/10.1016/j.promfg.2020.01.204

    Article  Google Scholar 

  2. Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., Vollgraf, R.: FLAIR: an easy-to-use framework for state-of-the-art NLP. In: Proceedings of the 2019 Conference of the North, pp. 54–59. Association for Computational Linguistics, Stroudsburg, PA (2019). https://doi.org/10.18653/v1/N19-4010

  3. Allen, J., Guinn, C., Horvtz, E.: Mixed-initiative interaction. IEEE Intell. Syst. Appl. 14(5), 14–23 (1999). 10/ch7j9k

    Google Scholar 

  4. Broekens, J., Chetouani, M.: Towards transparent robot learning through TDRL-based emotional expressions. IEEE Trans. Affect. Comput. 12(2), 352–362 (2021). https://doi.org/10.1109/TAFFC.2019.2893348

    Article  Google Scholar 

  5. Chernova, S., Thomaz, A.: Robot learning from human teachers. Synth. Lect. Artif. Intell. Mach. Learn. 8, 1–121 (2014). 10/gf7bxx

    Google Scholar 

  6. Chetouani, M.: Interactive robot learning: an overview. In: Chetouani, M., Dignum, V., Lukowicz, P., Sierra, C. (eds.) Human-Centered Artificial Intelligence: Advanced Lectures. Lecture Notes in Computer Science, pp. 140–172. Springer International Publishing, Cham (2023). https://doi.org/10.1007/978-3-031-24349-3_9

    Chapter  Google Scholar 

  7. Choo, F.X.: Spaun 2.0: extending the world’s largest functional brain model. undefined (2018)

    Google Scholar 

  8. Colledanchise, M., Ögren, P.: Behavior trees in robotics and AI: an introduction (2017). arXiv. https://doi.org/10.1201/9780429489105

  9. Gruber, T.: Ontology. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1963–1965. Springer, US, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9_1318

    Chapter  Google Scholar 

  10. Hélénon, F., Bimont, L., Nyiri, E., Thiery, S., Gibaru, O.: Learning prohibited and authorised grasping locations from a few demonstrations. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 1094–1100 (2020). 10/gk8djs

    Google Scholar 

  11. Hélénon, F., Thiery, S., Nyiri, E., Gibaru, O.: Cognitive architecture for intuitive and interactive task learning in industrial collaborative robotics. In: The 5th International Conference on Robotics, Control and Automation, ICRCA 2021 (2021)

    Google Scholar 

  12. Kotseruba, I., Tsotsos, J.K.: 40 years of cognitive architectures: core cognitive abilities and practical applications. Artif. Intell. Rev. 53(1), 17–94 (2020). https://doi.org/10.1007/s10462-018-9646-y

    Article  Google Scholar 

  13. Laird, J.E.: The Soar Cognitive Architecture. The MIT Press, Cambridge (2018). https://doi.org/10.7551/mitpress/7688.001.0001

    Book  Google Scholar 

  14. Laird, J.E., et al.: Interactive task learning. IEEE Intell. Syst. (2017). https://doi.org/10.1109/MIS.2017.3121552

    Article  Google Scholar 

  15. Lebiere, C.: Act-R. In: Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society (2019). https://doi.org/10.4324/9781315782379-4

  16. Makula, P., Mishra, A., Kumar, A., Karan, K., Mittal, V.K.: Multimodal smart robotic assistant. In: Proceedings of 2015 International Conference on Signal Processing, Computing and Control, ISPCC 2015, pp. 18–23. Institute of Electrical and Electronics Engineers Inc. (2016). https://doi.org/10.1109/ISPCC.2015.7374991

  17. Martinez, G.H., et al.: Single-network whole-body pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision (2019). https://doi.org/10.1109/ICCV.2019.00708

  18. Mohan, S.: From verbs to tasks: an integrated account of learning tasks from situated interactive instruction. Ph.D. thesis, University of Michigan (2015)

    Google Scholar 

  19. Mohseni-Kabir, A., et al.: Simultaneous learning of hierarchy and primitives for complex robot tasks. Auton. Robot. 43(4), 859–874 (2019). https://doi.org/10.1007/s10514-018-9749-y

    Article  Google Scholar 

  20. Munzer, T., Toussaint, M., Lopes, M.: Efficient behavior learning in human–robot collaboration. Auton. Robot. 42(5), 1103–1115 (2018). https://doi.org/10.1007/s10514-017-9674-5

    Article  Google Scholar 

  21. Rensink, R.A.: Seeing, sensing, and scrutinizing. In: Vision Research (2000). https://doi.org/10.1016/S0042-6989(00)00003-1

  22. Rich, C., Sidner, C.L., Lesh, N.: COLLAGEN: applying collaborative discourse theory to human-computer interaction. AI Magazine (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to François Hélénon or Stéphane Thiery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hélénon, F., Thiery, S., Nyiri, E., Gibaru, O. (2024). A Cognitive Architecture for Human-Aware Interactive Robot Learning with Industrial Collaborative Robots. In: Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M. (eds) Robot 2023: Sixth Iberian Robotics Conference. ROBOT 2023. Lecture Notes in Networks and Systems, vol 976. Springer, Cham. https://doi.org/10.1007/978-3-031-58676-7_34

Download citation

Publish with us

Policies and ethics