Skip to main content

Experimental Analysis of Robot Base Frame Identification Methods

  • Conference paper
  • First Online:
Robot 2023: Sixth Iberian Robotics Conference (ROBOT 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 976))

Included in the following conference series:

  • 21 Accesses

Abstract

For many industrial applications (e.g. machining, drilling, pick-and-place, etc.), robot’s poor absolute accuracy has to be enhanced through calibration processes. These processes involve measurement devices, mostly Laser Trackers, which measure the position of a Spherical Mounted Reflector, usually attached on the flange of the robot, in a virtual measurement frame associated with the Laser Tracker. However, calibration processes require to know the position of the flange of the robot in the robot’s base frame. Thus, there is a need for robot base frame identification methods. The objective of this paper is to provide both qualitative and quantitative elements to determine which method is the most suitable for robot calibration. Five different methods are discussed, and based on a qualitative analysis, three of them are experimentally compared, both on repeatability of the method and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mooring, B., Roth, Z., Driels, M.: Fundamentals of manipulator calibration, p. 27, January 1991

    Google Scholar 

  2. Elatta, A.Y., Gen, L.P., Zhi, F.L., Daoyuan, Y., Fei, L.: An overview of robot calibration. Inf. Technol. J. 3, 74–78 (2004)

    Article  Google Scholar 

  3. ISO 9283:2012. Robots manipulateurs industriels - critères de performance et méthodes d’essai correspondantes. Standard, International Organization for Standardization, Geneva, CH (2012)

    Google Scholar 

  4. Dombre, E., Khalil, W.: Robot Manipulators: Modeling, Performance Analysis and Control. Control Systems, Robotics and Manufacturing Series. ISTE Ltd., London (2007)

    Google Scholar 

  5. Khalil, W., Besnard, S.: Geometric calibration of robots with flexible joints and links. J. Intell. Robot. Syst. 34, 357–379 (2002)

    Article  Google Scholar 

  6. Olabi, A., Damak, M., Bearee, R., Gibaru, O., Leleu, S.: Improving the accuracy of industrial robots by offline compensation of joints errors. In: 2012 IEEE International Conference on Industrial Technology, pp. 492–497 (2012)

    Google Scholar 

  7. Klimchik, A., Caro, S., Pashkevich, A.: Optimal pose selection for calibration of planar anthropomorphic manipulators. Precis. Eng. 40, 214–229 (2015)

    Article  Google Scholar 

  8. Le Reun, A., Subrin, K., Dubois, A., Garnier, S.: Thermal drift and backlash issues for industrial robots positioning performance. Robotica 40(9), 2933–2952 (2022). https://doi.org/10.1017/S0263574721002022

    Article  Google Scholar 

  9. Vakilinejad, M., Olabi, A., Gibaru, O.: Identification and compensation of periodic gear transmission errors in robot manipulators, pp. 126–132 (2019). https://doi.org/10.1109/ICIT.2019.8754980

  10. Takanashi, N.: 6 DOF manipulators absolute positioning accuracy improvement using a neural-network. In: EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications, vol. 2, pp. 635–640 (1990)

    Google Scholar 

  11. Aoyagi, S., Kohama, A., Nakata, Y., Hayano, Y., Suzuki, M.: Improvement of robot accuracy by calibrating kinematic model using a laser tracking system-compensation of non-geometric errors using neural networks and selection of optimal measuring points using genetic algorithm, pp. 5660–5665 (2010)

    Google Scholar 

  12. Josin, Charney, White: Robot control using neural networks. In: IEEE 1988 International Conference on Neural Networks, vol. 2, pp. 625–631 (1988)

    Google Scholar 

  13. Gautier, M., Janot, A., Vandanjon, P.-O.: A new closed-loop output error method for parameter identification of robot dynamics. IEEE Trans. Control Syst. Technol. 21(2), 428–444 (2013)

    Article  Google Scholar 

  14. Zhao, G., Zhang, P., Ma, G., Xiao, W.: System identification of the nonlinear residual errors of an industrial robot using massive measurements. Robot. Comput. Integr. Manuf. 59, 104–114 (2019). ISSN 0736-5845

    Google Scholar 

  15. Nguyen, H.-N., Le, P.N., Kang, H.-J.: A new calibration method for enhancing robot position accuracy by combining a robot model-based identification approach and an artificial neural network-based error compensation technique. Adv. Mech. Eng. 11, 168781401882293 (2019)

    Article  Google Scholar 

  16. Gadringer, S., Gattringer, H., Müller, A., Naderer, R.: Robot calibration combining kinematic model and neural network for enhanced positioning and orientation accuracy. IFAC-PapersOnLine 53(2), 8432–8437 (2020). ISSN 2405-8963. 21st IFAC World Congress

    Google Scholar 

  17. Selingue, M., Olabi, A., Thiery, S., Béarée, R.: Experimental analysis of robot hybrid calibration based on geometrical identification and artificial neural network. In: 48th Annual Conference of the IEEE Industrial Electronics Society, IECON 2022 (2022)

    Google Scholar 

  18. Fernandez, S.R., Olabi, A., Gibaru, O.: On-line accurate 3D positioning solution for robotic large-scale assembly using a vision system and a 6Dof tracking unit, pp. 682–688, October 2018. https://doi.org/10.1109/IAEAC.2018.8577726

  19. Moeller, C., et al.: Real time pose control of an industrial robotic system for machining of large scale components in aerospace industry using laser tracker system. SAE Int. J. Aerosp. 10(2), 100–108 (2017)

    Article  Google Scholar 

  20. Drouot, A., Zhao, R., Irving, L., Sanderson, D., Ratchev, S.: Measurement assisted assembly for high accuracy aerospace manufacturing. IFAC-PapersOnLine 51(11), 393–398 (2018). ISSN 2405-8963. 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018. https://doi.org/10.1016/j.ifacol.2018.08.326. https://www.sciencedirect.com/science/article/pii/S2405896318314502

  21. Yuan, P., Chen, D., Wang, T., Cao, S., Cai, Y., Xue, L.: A compensation method based on extreme learning machine to enhance absolute position accuracy for aviation drilling robot. Adv. Mech. Eng. 10(3), 1687814018763411 (2018). https://doi.org/10.1177/1687814018763411

    Article  Google Scholar 

  22. Besset, P., Olabi, A., Gibaru, O.: Advanced calibration applied to a collaborative robot. In: 2016 IEEE International Power Electronics and Motion Control Conference (PEMC), pp. 662–667 (2016)

    Google Scholar 

  23. Zeng, Y., Tian, W., Li, D., He, X., Liao, W.: An error-similarity-based robot positional accuracy improvement method for a robotic drilling and riveting system. Int. J. Adv. Manuf. Technol. 88(9), 2745–2755 (2017). ISSN 1433-3015. https://doi.org/10.1007/s00170-016-8975-8

  24. Placzek, M., Piszczek, L.: Testing of an industrial robot’s accuracy and repeatability in off and online environment. In: Eksploatacja i Niezawodnosc – Maintenance Reliab. 20(3), 455–464 (2018). ISSN 1507-2711

    Google Scholar 

  25. Kleinkes, M., Loser, R.: Laser tracker and 6Dof measurement strategies in industrial robot applications. In: Coordinate Metrology System Conference, CMSC 2011, Phoenix, Arizona (2011)

    Google Scholar 

  26. Morozov, M., et al.: Assessing the accuracy of industrial robots through metrology for the enhancement of automated non-destructive testing, pp. 335–340 (2016). https://doi.org/10.1109/MFI.2016.7849510

  27. McGarry, L., Butterfield, J., Murphy, A.: Assessment of ISO standardisation to identify an industrial robot’s base frame. Robot. Comput. Integr. Manuf. 74, 102275 (2022). ISSN 0736-5845. https://doi.org/10.1016/j.rcim.2021.102275. https://www.sciencedirect.com/science/article/pii/S0736584521001551

  28. Shiu, Y.C., Ahmad, S.: Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form ax=xb. IEEE Trans. Robot. Autom. 5(1), 16–29 (1989). https://doi.org/10.1109/70.88014

    Article  Google Scholar 

  29. Sun, Y., Hollerbach, J.M.: Observability index selection for robot calibration. In: 2008 IEEE International Conference on Robotics and Automation, pp. 831–836. IEEE (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Selingue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Selingue, M., Olabi, A., Thiery, S., Béarée, R. (2024). Experimental Analysis of Robot Base Frame Identification Methods. In: Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M. (eds) Robot 2023: Sixth Iberian Robotics Conference. ROBOT 2023. Lecture Notes in Networks and Systems, vol 976. Springer, Cham. https://doi.org/10.1007/978-3-031-58676-7_41

Download citation

Publish with us

Policies and ethics