Skip to main content

SQIsignHD: New Dimensions in Cryptography

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2024 (EUROCRYPT 2024)

Abstract

We introduce SQIsignHD, a new post-quantum digital signature scheme inspired by SQIsign. SQIsignHD exploits the recent algorithmic breakthrough underlying the attack on SIDH, which allows to efficiently represent isogenies of arbitrary degrees as components of a higher dimensional isogeny. SQIsignHD overcomes the main drawbacks of SQIsign. First, it scales well to high security levels, since the public parameters for SQIsignHD are easy to generate: the characteristic of the underlying field needs only be of the form \(2^{f}3^{f'}-1\). Second, the signing procedure is simpler and more efficient. Our signing procedure implemented in C runs in 28 ms, which is a significant improvement compared to SQISign. Third, the scheme is easier to analyse, allowing for a much more compelling security reduction. Finally, the signature sizes are even more compact than (the already record-breaking) SQIsign, with compressed signatures as small as 109 bytes for the post-quantum NIST-1 level of security. These advantages may come at the expense of the verification, which now requires the computation of an isogeny in dimension 4, a task whose optimised cost is still uncertain, as it has been the focus of very little attention. Our experimental sagemath implementation of the verification runs in around 600 ms, indicating the potential cryptographic interest of dimension 4 isogenies after optimisations and low level implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    One could improve slightly the scheme by defining \(\ell ^e\)-good integers as integers q such that \(\ell ^e-q=sq'\), with s a smooth integer whose prime factors are all congruent to 1 modulo 4 and \(q'\) is a prime congruent to 1 modulo 4. Indeed, all we really need is that \(\ell ^e-q\) is easy to factor so Cornacchia’s algorithm can be applied efficiently. This alternate definition would improve a bit the search for \(\ell ^e\)-good integer, but we went for the simplest definition.

  2. 2.

    Actually, we will not have exactly \(D_\tau =D_\psi =\ell '^{2f'}\) but \(D_\tau \) and \(D_\psi \) will be divisors of \(\ell '^{2f'}\) close to \(\ell '^{2f'}\). It will be the same for \(D_{\psi '}\) (see Algorithm 1). We assume equality to simplify the exposition.

  3. 3.

    We can compute the norm of \(\sigma '\) on \(E'_2[m]\) (which is \(\deg (\sigma ') \mod m\)) for a bunch of small primes m and apply the Chinese remainder theroem.

  4. 4.

    Which essentially consists in computing a chain of 3-isogenies in dimension 1. The signature also needs to compute similar isogenies, and in this case the low level C implementation only takes 1–2 ms, which shows the potential of improvements of writing a low level implementation of the verification.

References

  1. Ahrens, K.: Sieving for large twin smooth integers using single solutions to Prouhet-Tarry-Escott. Cryptology ePrint Archive, Paper 2023/219. (2023). https://eprint.iacr.org/2023/219

  2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, Xi’an, China, pp. 1–10. ACM (2016)

    Google Scholar 

  3. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies of large prime degree. In: Open Book Series, Proceedings of the Fourteenth Algorithmic Number Theory Symposium - ANTS XIV 4.1, pp. 39–55 (2020)

    Google Scholar 

  4. Bruno, G., et al.: Cryptographic smooth neighbors. Cryptology ePrint Archive, Paper 2022/1439 (2022). https://eprint.iacr.org/2022/1439

  5. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Advances in Cryptology - EUROCRYPT 2023: 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, 23–27 April 2023, Proceedings, Part V, Lyon, Springer, France, pp. 423–447 (2023). ISBN: 978-3-031-30588-7. https://doi.org/10.1007/978-3-031-30589-4_15

  6. Cornacchia, G.: Su di un metodo per la risoluzione in numeri interi dell’equazione \(\sum _{h=0}^n C_h x^{n-h}y^h=P\). Giornale di matematiche di Battaglini 46, 33–90 (1908)

    Google Scholar 

  7. Costello, C., Meyer, M., Naehrig, M.: Sieving for twin smooth integers with solutions to the prouhet-tarry-escott problem. In: Canteaut, A., Standaert, F.-X. (ed.) Advances in Cryptology - EUROCRYPT 2021. Springer, Cham, pp. 272–301 (2021). https://doi.org/10.1007/978-3-030-77870-5_10, ISBN: 978-3-030-77870-5

  8. Couveignes, J.-M.: Hard Homogeneous Spaces. Cryptology ePrint Archive, Report 2006/291 (2006). https://eprint.iacr.org/2006/291

  9. Dartois, P., Leroux, A., Robert, D., Wesolowski, B.: SQIsignHD: new dimensions in cryptography. Cryptology ePrint Archive, Paper 2023/436 (2023). https://eprint.iacr.org/2023/436

  10. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: SQISign: compact post-quantum signatures from quaternions and isogenies. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 64–93. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_3

    Chapter  Google Scholar 

  11. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic curves over \(\mathbb{F}_p\). Des. Codes Cryptography 78(2), 425–440 (2016). https://doi.org/10.1007/s10623-014-0010-1

  12. Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., Petit, C.: Supersingular isogeny graphs and endomorphism rings: reductions and solutions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 329–368. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_11

    Chapter  Google Scholar 

  13. De Feo, L., Leroux, A., Longa, P., Wesolowski, B.: New algorithms for the deuring correspondence. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology - EUROCRYPT 2023. LNCS, vol. 14008, pp. 659–690. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_23

  14. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  15. Galbraith, Steven D.., Petit, Christophe, Silva, Javier: Identification protocols and signature schemes based on supersingular isogeny problems. J. Cryptology 33(1), 130–175 (2019). https://doi.org/10.1007/s00145-019-09316-0

    Article  MathSciNet  Google Scholar 

  16. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. STOC 1996. Philadelphia, Pennsylvania, Association for Computing Machinery, USA, pp. 212–219 (1996). ISBN: 0897917855. https://doi.org/10.1145/237814.237866

  17. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols: Techniques and Constructions. 1st. Springer, Berlin (2010). ISBN: 3642143024

    Google Scholar 

  18. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

    Chapter  Google Scholar 

  19. Kani, E.: The number of curves of genus two with elliptic differentials. J. für die reine und angewandte Mathematik 485, 93–122 (1997). https://doi.org/10.1515/crll.1997.485.93

  20. Kohel, D., Lauter, K., Petit, C., Tignol, J.-P.: On the quaternion - isogeny path problem. LMS J. Comput. Math. 17 (2014). https://doi.org/10.1112/S1461157014000151

  21. de Lagrange, J. L.: Démonstration d’un théoreme d’arithmétique. In: Nouveau Mémoire de l’Académie Royale des Sciences de Berlin, pp. 123–133 (1770)

    Google Scholar 

  22. Leroux, A.: Quaternion algebras and isogeny-based cryptography (2022). http://www.lix.polytechnique.fr/Labo/Antonin.LEROUX/manuscrit_these.pdf

  23. Lin, K., Wang, W., Xu, Z., Zhao, C.-A.: A faster software implementation of SQISign. Cryptology ePrint Archive, Paper 2023/753 (2023). https://eprint.iacr.org/2023/753

  24. Lubicz, D., Robert, D.: Computing isogenies between abelian varieties. Compos. Math. 148(5), 1483–1515 (2012). https://doi.org/10.1112/S0010437X12000243

    Article  MathSciNet  Google Scholar 

  25. Lubicz, D., Robert, D.: Computing separable isogenies in quasi-optimal time. LMS J. Comput. Math. 18(1), 98–216 (2015). https://doi.org/10.1112/S146115701400045X

  26. Lubicz, D., Robert, D.: Fast change of level and applications to isogenies. 9, 7 (2023). https://doi.org/10.1007/s40993-022-00407-9

  27. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology - EUROCRYPT 2023. LNCS, vol. 14008, pp. 448–471. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_16

  28. PARI/GP version 2.13.4. http://pari.math.u-bordeaux.fr/. The PARI Group. Univ. Bordeaux (2022)

  29. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Trans. Inf. Theor. 24(1), 106–110 (1978)

    Article  MathSciNet  Google Scholar 

  30. Pollack, P., Treviño, E.: Finding the four squares in lagrange’s theorem. Integers 18A, A15 (2018)

    Google Scholar 

  31. Rabin, J.O., Shallit, M.O.: Randomized algorithms in number theory. Commun. Pure Appl. Math. 39(S1), S239–S256 (1986). https://doi.org/10.1002/cpa.3160390713

  32. Robert, D.: Evaluating isogenies in polylogarithmic time. Cryptology ePrint Archive, Paper 2022/1068 (2022). https://eprint.iacr.org/2022/1068

  33. Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology - EUROCRYPT 2023. EUROCRYPT 2023, LNCS, vol. 14008, pp. 472–503. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_17

  34. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryptology ePrint Archive, Report 2006/145 (2006). https://eprint.iacr.org/2006/145

  35. Rouse, J., Thompson, K.: Quaternary quadratic forms with prime discriminant (2022). arXiv: 2206.00412 [math.NT]

  36. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 10.0) (2023). https://www.sagemath.org

  37. The SQIsign team. SQIsign (2023). https://www.sqisign.org

  38. Vélu, J.: Isogénies entre courbes elliptiques. In: Comptes-rendus de l’Académie des Sciences, vol. 273, pp. 238–241, July 1971. https://gallica.bnf.fr

  39. Venturi, D., Villani, A.: Zero-knowledge proofs and applications, May 2015. http://danieleventuri.altervista.org/files/zeroknowledge. pdf

  40. Voight, J.: Quaternion algebras. v.0.9.23, August 2020. https://math.dartmouth.edu/~jvoight/quat.html

  41. Wesolowski, B.: The supersingular isogeny path and endomorphism ring problems are equivalent. In: FOCS 2021 - 62nd Annual IEEE Symposium on Foundations of Computer Science. Denver, Colorado, United States, February 2022. https://hal.archives-ouvertes.fr/hal-03340899

  42. Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto, P.S.L.M.: Faster isogeny-based compressed key agreement. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 248–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_12

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Luca De Feo for his advice all along this project and for suggesting the title of this paper. This project was supported by ANR grant CIAO (ANR-19-CE48-0008), PEPR PQ-TLS (the France 2030 program under grant agreement ANR-22-PETQ-0008 PQ-TLS) and the European Research Council under grant No. 101116169 (AGATHA CRYPTY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierrick Dartois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dartois, P., Leroux, A., Robert, D., Wesolowski, B. (2024). SQIsignHD: New Dimensions in Cryptography. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14651. Springer, Cham. https://doi.org/10.1007/978-3-031-58716-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58716-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58715-3

  • Online ISBN: 978-3-031-58716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics