Abstract
Tightly secure cryptographic schemes can be implemented with standardized parameters, while still having a sufficiently high security level backed up by their analysis. In a recent work, Pan and Wagner (Eurocrypt 2023) presented the first tightly secure two-round multi-signature scheme without pairings, called Chopsticks. While this is an interesting first theoretical step, Chopsticks is much less efficient than its non-tight counterparts.
In this work, we close this gap by proposing a new tightly secure two-round multi-signature scheme that is as efficient as non-tight schemes. Our scheme is based on the \(\textsf{DDH}\) assumption without pairings. Compared to Chopsticks, we reduce the signature size by more than a factor of 3 and the communication complexity by more than a factor of 2.
Technically, we achieve this as follows: (1) We develop a new pseudorandom path technique, as opposed to the pseudorandom matching technique in Chopsticks. (2) We construct a more efficient commitment scheme with suitable properties, which is an important primitive in both our scheme and Chopsticks. Surprisingly, we observe that the commitment scheme does not have to be binding, enabling our efficient construction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The ciphertext overhead is the size of the ciphertext minus the size of the message.
- 2.
We do not consider proofs in the (idealized) algebraic group model [23].
- 3.
If we only have a computationally binding mode, the resulting multi-signature scheme needs to rely on rewinding. Therefore, we have to insist on a statistically binding mode.
- 4.
We use additive notation when talking about lossy identification from such linear functions in general, and multiplicative notation for the concrete instantiation of the linear function and commitment.
- 5.
Recall that lossy soundness is a statistical notion, and so guessing is not a problem in terms of tightness at this point.
References
Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure signatures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_34
Kılınç Alper, H., Burdges, J.: Two-round trip schnorr multi-signatures via delinearized witnesses. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 157–188. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_7
Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_26
Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_10
Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_18
Bellare, M., Dai, W.: Chain reductions for multi-signatures and the HBMS scheme. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 650–678. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_22
Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 390–399. ACM Press (Oct / Nov 2006). https://doi.org/10.1145/1180405.1180453
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press (Nov 1993). https://doi.org/10.1145/168588.168596
Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_12
Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_23
Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3
Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller blockchains. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 435–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_15
Boschini, C., Takahashi, A., Tibouchi, M.: MuSig-L: Lattice-based multi-signature with single-round online phase. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II. LNCS, vol. 13508, pp. 276–305. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15979-4_10
Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 404–434. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_14
Chairattana-Apirom, R., Hanzlik, L., Loss, J., Lysyanskaya, A., Wagner, B.: PI-cut-choo and friends: Compact blind signatures via parallel instance cut-and-choose and more. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part III. LNCS, vol. 13509, pp. 3–31. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15982-4_1
Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_25
Crites, E., Komlo, C., Maller, M.: How to prove schnorr assuming schnorr: Security of multi- and threshold signatures. Cryptology ePrint Archive, Report 2021/1375 (2021). https://eprint.iacr.org/2021/1375
Damgård, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-Round n-out-of-n and multi-signatures and trapdoor commitment from lattices. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 99–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_5
Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange protocols. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021, Part II. LNCS, vol. 12727, pp. 448–479. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-78375-4_18
Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with tight multi-user security. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12711, pp. 1–31. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_1
Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE Symposium on Security and Privacy, pp. 1084–1101. IEEE Computer Society Press (May 2019). https://doi.org/10.1109/SP.2019.00050
Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8
Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2
Fukumitsu, M., Hasegawa, S.: A tightly secure ddh-based multisignature with public-key aggregation. Int. J. Netw. Comput. 11(2), 319–337 (2021). http://www.ijnc.org/index.php/ijnc/article/view/257
Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_1
Gay, R., Hofheinz, D., Kohl, L., Pan, J.: More efficient (almost) tightly secure structure-preserving signatures. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 230–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_8
Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 95–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_4
Goh, E.J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight reductions to the Diffie-Hellman problems. J. Cryptol. 20(4), 493–514 (2007). https://doi.org/10.1007/s00145-007-0549-3
Han, S., et al.: Authenticated key exchange and signatures with tight security in the standard model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 670–700. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_23
Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from identification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 345–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_12
Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_17
Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_35
Itakura, K., Nakamura, K.: A public-key cryptosystem suitable for digital multisignatures. NEC Res. Developm. 71, 1–8 (1983)
Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature schemes. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 468–492. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_16
Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight security reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.) ACM CCS 2003, pp. 155–164. ACM Press (Oct 2003). https://doi.org/10.1145/948109.948132
Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identification schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_2
Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_26
Langrehr, R., Pan, J.: Unbounded HIBE with tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 129–159. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_5
Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 785–814. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_27
Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_28
Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple schnorr multi-signatures with applications to bitcoin. Des. Codes Cryptogr. 87(9), 2139–2164 (2019). https://doi.org/10.1007/s10623-019-00608-x
Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: Extended abstract. In: Reiter, M.K., Samarati, P. (eds.) ACM CCS 2001, pp. 245–254. ACM Press (Nov 2001). https://doi.org/10.1145/501983.502017
Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round schnorr multi-signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_8
Nick, J., Ruffing, T., Seurin, Y., Wuille, P.: MuSig-DN: Schnorr multi-signatures with verifiably deterministic nonces. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1717–1731. ACM Press (Nov 2020). https://doi.org/10.1145/3372297.3417236
Pan, J., Wagner, B.: Lattice-based signatures with tight adaptive corruptions and more. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS, vol. 13178, pp. 347–378. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-030-97131-1_12
Pan, J., Wagner, B.: Chopsticks: Fork-free two-round multi-signatures from non-interactive assumptions. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 597–627. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4_21
Pan, J., Wagner, B.: Toothpicks: More efficient fork-free two-round multi-signatures. Cryptology ePrint Archive, Paper 2023/1613 (2023). https://eprint.iacr.org/2023/1613
Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725
Takemure, K., Sakai, Y., Santoso, B., Hanaoka, G., Ohta, K.: More efficient two-round multi-signature scheme with provably secure parameters. Cryptology ePrint Archive, Report 2023/155 (2023). https://eprint.iacr.org/2023/155
Tessaro, S., Zhu, C.: Threshold and multi-signature schemes from linear hash functions. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 628–658. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30589-4_22
Acknowledgment
Benedikt Wagner was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 507237585.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Pan, J., Wagner, B. (2024). Toothpicks: More Efficient Fork-Free Two-Round Multi-signatures. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14651. Springer, Cham. https://doi.org/10.1007/978-3-031-58716-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-58716-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58715-3
Online ISBN: 978-3-031-58716-0
eBook Packages: Computer ScienceComputer Science (R0)