Abstract
We present a novel circuit bootstrapping algorithm that outperforms the state-of-the-art TFHE method with 9.9\(\times \) speedup and 15.6\(\times \) key size reduction. These improvements can be attributed to two technical contributions. Firstly, we redesigned the circuit bootstrapping workflow to operate exclusively under the ring ciphertext type, which eliminates the need for conversion between LWE and RLWE ciphertexts. Secondly, we improve the LMKC+ blind rotation algorithm by reducing the number of automorphisms, then propose the first automorphism type multi-value functional bootstrapping. These automorphism-based techniques lead to further key size optimization, and are of independent interest besides circuit bootstrapping. Based on our new circuit bootstrapping we can evaluate AES-128 in 26.2 s (single thread), achieving 10.3\(\times \) speedup compared with the state-of-the-art TFHE-based approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Sample extraction is to extract LWE sample from RLWE, which is detailed in Sect. 2.4.
- 2.
- 3.
They also propose a 4-minute variant without bootstrapping. However, it can not be used for transciphering since the ciphertext is too noisy to do further evaluation.
- 4.
- 5.
LMKC+ has proposed an optimization to reduce the number of automorphisms by using additional storage. More details can be found in Sect. 4.2.
- 6.
- 7.
- 8.
We detailed this application scenario in the full version of this paper [35].
References
Al Badawi, A., et al.: Openfhe: open-source fully homomorphic encryption library. In: Proceedings of the 10th Workshop on Encrypted Computing and Applied Homomorphic Cryptography, pp. 53–63 (2022)
Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology. CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17
Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology. CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3), 1–36 (2014)
Carpov, S., Izabachène, M., Mollimard, V.: New techniques for multi-value input homomorphic evaluation and applications. In: Matsui, M. (ed.) Topics in Cryptology, CT-RSA 2019. LNCS, vol. 11405, pp. 106–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_6
Chen, H., Dai, W., Kim, M., Song, Y.: Efficient homomorphic conversion between (ring) LWE ciphertexts. In: Sako, K., Tippenhauer, N.O. (eds.) Applied Cryptography and Network Security, ACNS 2021. LNCS, vol. 12726, pp. 460–479. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-78372-3_18
Cheon, J.H., et al.: Batch Fully Homomorphic Encryption over the Integers. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology. EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_20
Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology, ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology. ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology, ASIACRYPT 2017. LNCS, vol. 10624, pp. 377–408. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_14
Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)
Chillotti, I., Ligier, D., Orfila, J.-B., Tap, S.: Improved programmable bootstrapping with larger precision and efficient arithmetic circuits for TFHE. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology. ASIACRYPT 2021. LNCS, vol. 13092, pp. 670–699. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_23
Coron, J.S., Lepoint, T., Tibouchi, M.: Coron, JS., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryption over the integers. In: Krawczyk, H. (ed.) Public-Key Cryptography. PKC 2014. LNCS, vol. 8383, pp. 311–328. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_18
De Micheli, G., Kim, D., Micciancio, D., Suhl, A.: Faster amortized fhew bootstrapping using ring automorphisms. Cryptology ePrint Archive (2023)
Doröz, Y., Hu, Y., Sunar, B.: Homomorphic aes evaluation using the modified ltv scheme. Des. Codes Crypt. 80, 333–358 (2016)
Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology. EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24
Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction: generalized worst-case to average-case reductions and homomorphic Cryptosystems. In: Fischlin, M., Coron, J.-S. (eds.) Advances in Cryptology. EUROCRYPT 2016. LNCS, vol. 9666, pp. 528–558. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_19
Gentry, C.: A Fully Homomorphic Encryption Scheme. Stanford University (2009)
Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology. CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology. CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Guimarães, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in TFHE. In: IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 229–253 (2021)
James, F.: Monte carlo theory and practice. Rep. Prog. Phys. 43(9), 1145 (1980)
Kim, A., Lee, Y., Deryabin, M., Eom, J., Choi, R.: LFHE: fully homomorphic encryption with bootstrapping key size less than a megabyte. Cryptology ePrint Archive (2023)
Lee, Y., et al.: Efficient FHEW bootstrapping with small evaluation keys, and applications to threshold homomorphic encryption. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology, EUROCRYPT 2023. LNCS, vol. 14006, pp. 227–256. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30620-4_8
Liu, F.-H., Wang, H.: Batch bootstrapping I:: a new framework for SIMD bootstrapping in polynomial modulus. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology, EUROCRYPT 2023. LNCS, vol. 14006, pp. 321–352. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30620-4_11
Liu, F.H., Wang, H.: Batch bootstrapping II: bootstrapping in polynomial modulus only requires o\(^{\sim }\)(1) fhe multiplications in amortization. In: Advances in Cryptology, EUROCRYPT 2023. LNCS, vol. 14006. pp. 353–384. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-30620-4_12
López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the Forty-Fourth annual ACM Symposium on Theory of Computing, pp. 1219–1234 (2012)
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) Advances in Cryptology, EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Matsuoka, K., Banno, R., Matsumoto, N., Sato, T., Bian, S.: Virtual secure platform: a five-stage pipeline processor over TFHE. In: USENIX Security Symposium, pp. 4007–4024 (2021)
Micciancio, D., Polyakov, Y.: Bootstrapping in fhew-like cryptosystems. In: Proceedings of the 9th on Workshop on Encrypted Computing and Applied Homomorphic Cryptography, pp. 17–28 (2021)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 1–40 (2009)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34:1–34:40 (2009)
Trama, D., Clet, P.E., Boudguiga, A., Sirdey, R.: At last! a homomorphic aes evaluation in less than 30 seconds by means of tfhe. Cryptology ePrint Archive (2023)
Van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (eds.) Advances in Cryptology, EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2
Wang, R., et al.: Circuit bootstrapping: faster and smaller. Cryptology ePrint Archive, Paper 2024/323 (2024). https://eprint.iacr.org/2024/323
Acknowledgments
We are grateful for the helpful comments from the anonymous reviewers. This work was supported by the Huawei Technologies Co., Ltd and CAS Project for Young Scientists in Basic Research (Grant No. YSBR-035).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Wang, R. et al. (2024). Circuit Bootstrapping: Faster and Smaller. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14652. Springer, Cham. https://doi.org/10.1007/978-3-031-58723-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-58723-8_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58722-1
Online ISBN: 978-3-031-58723-8
eBook Packages: Computer ScienceComputer Science (R0)