Skip to main content

Registered Functional Encryptions from Pairings

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2024 (EUROCRYPT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14652))

Abstract

This work initiates the study of concrete registered functional encryption (Reg-FE) beyond “all-or-nothing” functionalities:

  • We build the first Reg-FE for linear function or inner-product evaluation (Reg-IPFE) from pairings. The scheme achieves adaptive IND-security under k-Lin assumption in the prime-order bilinear group. A minor modification yields the first Registered Inner-Product Encryption (Reg-IPE) scheme from k-Lin assumption. Prior work achieves the same security in the generic group model.

  • We build the first Reg-FE for quadratic function (Reg-QFE) from pairing. The scheme achieves very selective simulation-based security (SIM-security) under bilateral k-Lin assumption in the prime-order bilinear group. Here, “very selective” means that the adversary claims challenge messages, all quadratic functions to be registered and all corrupted users at the beginning.

Besides focusing on the compactness of the master public key and helper keys, we also aim for compact ciphertexts in Reg-FE. Let L be the number of slots and n be the input size. Our first Reg-IPFE has weakly compact ciphertexts of size \(O(n\cdot \log L)\) while our second Reg-QFE has compact ciphertexts of size \(O(n+\log L)\). Technically, for our first Reg-IPFE, we employ nested dual-system method within the context of Reg-IPFE; for our second Reg-QFE, we follow Wee’s “IPFE-to-QFE” transformation [TCC’ 20] but devise a set of new techniques that make our pairing-based Reg-IPFE compatible. Along the way, we introduce a new notion named Pre-Constrained Registered IPFE which generalizes slotted Reg-IPFE by constraining the form of functions that can be registered.

This work is partially supported by National Natural Science Foundation of China (62372175, 62372285), Shanghai Rising-Star Program (22QA1403800), Science and Technology on Communication Security Laboratory Foundation (6142103022208), Innovation Program of Shanghai Municipal Education Commission (2021-01-07-00-08-E00101) and the “Digital Silk Road” Shanghai International Joint Lab of Trustworthy Intelligent Software (22510750100).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Formally, the adversary is given \( \textsf {crs}\) that allows it to derive \( \textsf{mpk}, \textsf {hsk}_1,\ldots , \textsf {hsk}_L\) on its own; our conceptual definition gives a simple mind model analogous to FE.

  2. 2.

    Here we hardcode master public key and master secret key inside \(\textsf{i}\textsf{Enc}\) and \(\textsf{i}\textsf{Key}\), respectively, for notation simplicity.

  3. 3.

    The \((k,\ell ,d)\text {-}\textsc {MDDH}\) assumption holds unconditionally when \(\ell > k\).

  4. 4.

    Note that we use two difference indices i and j for \( \textsf {pk}_i\) and \( \textsf {hsk}_j\), respectively; both of them range from 1 to L.

  5. 5.

    Note that we employ i as the index for \(\textbf{W}_q\)’s and \(\textbf{M}_q\)’s while j is the index for \(\textbf{r}_q\)’s; both of them range from 1 to \(L_q\). One exception is the terms with \(\textbf{W}_q\), which is conceptually \(\textbf{W}_{q,i}(\textbf{M}_{q,i}\otimes \textbf{B}_q\textbf{r}_{q,j}^{\!\scriptscriptstyle {\top }})\) with \(i=j\). Note that we do not use \(\textsf{td}_{q,1},\ldots ,\textsf{td}_{q,L_q}\) and \(\textsf{i} \textsf {sk}\) in the actual scheme.

References

  1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  2. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  3. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption for deterministic finite automata from \(\sf DLIN\). In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 91–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_4

    Chapter  Google Scholar 

  4. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Pre-constrained encryption. In: Braverman, M. (ed.) 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 – February 3, 2022, Berkeley, CA, USA, vol. 215 of LIPIcs, pp. 4:1–4:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  5. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_27

    Chapter  Google Scholar 

  6. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  7. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_20

    Chapter  Google Scholar 

  8. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_19

    Chapter  Google Scholar 

  9. Chen, J., Gong, J., Wee, H.: Improved inner-product encryption with adaptive security and full attribute-hiding. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 673–702. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_23

    Chapter  Google Scholar 

  10. Cong, K., Eldefrawy, K., Smart, N.P.: Optimizing registration based encryption. IACR Cryptol. ePrint Arch., pp. 499 (2021)

    Google Scholar 

  11. Datta, P., Pal, T.: Registration-based functional encryption. Cryptology ePrint Archive, pp. 2023/457 (2023). https://eprint.iacr.org/archive/2023/457/20230330:055744

  12. Datta, P., Pal, T., Yamada, S.: Registered FE beyond predicates: (attribute-based) linear functions and more. Cryptology ePrint Archive, pp. 2023/457 (2023). https://eprint.iacr.org/2023/457

  13. Döttling, N., Kolonelos, D., Lai, R.W.F., Lin, C., Malavolta, G., Rahimi, A.: Efficient laconic cryptography from learning with errors. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. LNCS, vol. 14006. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30620-4_14

  14. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8

    Chapter  Google Scholar 

  15. Fiore, D., Kolonelos, D., de Perthuis, P.: Cuckoo commitments: Registration-based encryption and key-value map commitments for large spaces. Cryptology ePrint Archive, pp. 2023/1389 (2023). https://eprint.iacr.org/2023/1389

  16. Francati, D., Friolo, D., Maitra, M., Malavolta, G., Rahimi, A., Venturi, D.: Registered (inner-product) functional encryption. Asiacrypt 2023 (2023). https://eprint.iacr.org/2023/395

  17. Freitag, C., Waters, B., Wu, D.J.: How to use (Plain) witness encryption: Registered ABE, flexible broadcast, and more. CRYPTO 2023 (2023). https://eprint.iacr.org/2023/812

  18. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryption: removing private-key generator from IBE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 689–718. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_25

    Chapter  Google Scholar 

  19. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A., Sekar, S.: Registration-based encryption from standard assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11443, pp. 63–93. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17259-6_3

    Chapter  Google Scholar 

  20. Glaeser, N., Kolonelos, D., Malavolta, G., Rahimi, A.: Efficient registration-based encryption. Cryptology ePrint Archive, Report 2022/1505 (2022). https://eprint.iacr.org/2022/1505

  21. Goyal, R., Vusirikala, S.: Verifiable registration-based encryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 621–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_21

    Chapter  Google Scholar 

  22. Hajiabadi, M., Mahmoody, M., Qi, W., Sarfaraz, S.: Lower bounds on assumptions behind registration-based encryption. In: Rothblum, G., Wee, H. (eds.) Theory of Cryptography. TCC 2023. LNCS, vol. 14370. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48618-0_11

  23. Hohenberger, S., Lu, G., Waters, B., Wu, D.J.: Registered attribute-based encryption. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. LNCS, vol. 14006. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30620-4_17

  24. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_1

    Chapter  Google Scholar 

  25. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_4

    Chapter  Google Scholar 

  26. Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_30

    Chapter  Google Scholar 

  27. Lin, H., Luo, J.: Compact adaptively secure ABE from \(k\)-Lin: beyond NC\(^{1}\) and towards NL. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 247–277. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_9

    Chapter  Google Scholar 

  28. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: Dinur, I., (ed.) 57th FOCS, pp. 11–20. IEEE Computer Society Press (2016)

    Google Scholar 

  29. Mahmoody, M., Qi, W.: Online mergers and applications to registration-based encryption and accumulators. In: Chung, K.-M. (ed.) 4th Conference on Information-Theoretic Cryptography, ITC 2023, June 6–8, 2023, Aarhus University, Aarhus, Denmark, vol. 267 of LIPIcs, pp. 15:1–15:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

    Google Scholar 

  30. Mahmoody, M., Qi, W., Rahimi, A.: Lower bounds for the number of decryption updates in registration-based encryption. Cryptology ePrint Archive, pp. 2022/1285 (2022). https://eprint.iacr.org/2022/1285

  31. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_35

    Chapter  Google Scholar 

  32. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_7

    Chapter  Google Scholar 

  33. Wee, H.: Functional encryption for quadratic functions from k-Lin, revisited. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 210–228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_8

    Chapter  Google Scholar 

  34. Zhu, Z., Zhang, K., Gong, J., Qian, H.: Registered ABE via predicate encodings. In: Asiacrypt (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junqing Gong or Haifeng Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Z., Li, J., Zhang, K., Gong, J., Qian, H. (2024). Registered Functional Encryptions from Pairings. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14652. Springer, Cham. https://doi.org/10.1007/978-3-031-58723-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58723-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58722-1

  • Online ISBN: 978-3-031-58723-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics