Abstract
Monero is a popular cryptocurrency with strong privacy guarantees for users’ transactions. At the heart of Monero’s privacy claims lies a complex transaction system called RingCT, which combines several building blocks such as linkable ring signatures, homomorphic commitments, and range proofs, in a unique fashion. In this work, we provide the first rigorous security analysis for RingCT (as given in Zero to Monero, v2.0.0, 2020) in its entirety. This is in contrast to prior works that only provided security arguments for parts of RingCT.
To analyze Monero’s transaction system, we introduce the first holistic security model for RingCT. We then prove the security of RingCT in our model. Our framework is modular: it allows to view RingCT as a combination of various different sub-protocols. Our modular approach has the benefit that these components can be easily updated in future versions of RingCT, with only minor modifications to our analysis.
At a technical level, we split our analysis in two parts. First, we identify which security notions for building blocks are needed to imply security for the whole system. Interestingly, we observe that existing and well-established notions (e.g., for the linkable ring signature) are insufficient. Second, we analyze all building blocks as implemented in Monero and prove that they satisfy our new notions. Here, we leverage the algebraic group model to overcome subtle problems in the analysis of the linkable ring signature component. As another technical highlight, we show that our security goals can be mapped to a suitable graph problem, which allows us to take advantage of the theory of network flows in our analysis. This new approach is also useful for proving security of other cryptocurrencies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Special care needs to be taken for corruptions, but we ignore them in this informal overview.
References
Alonso, K.M., Joancomartí, J.H.: Monero - privacy in the blockchain. Cryptology ePrint Archive, Report 2018/535 (2018). https://eprint.iacr.org/2018/535
Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures: logarithmic-size, no setup—from standard assumptions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 281–311. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_10
Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE Computer Society Press (2014). https://doi.org/10.1109/SP.2014.36
Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 124–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_9
Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (linkable) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_16
Brendel, J., Cremers, C., Jackson, D., Zhao, M.: The provable security of Ed25519: theory and practice. In: 2021 IEEE Symposium on Security and Privacy, pp. 1659–1676. IEEE Computer Society Press (2021). https://doi.org/10.1109/SP40001.2021.00042
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society Press (2018). https://doi.org/10.1109/SP.2018.00020
Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing products and applications. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 65–97. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92078-4_3
Cao, T., Yu, J., Decouchant, J., Luo, X., Verissimo, P.: Exploring the Monero peer-to-peer network. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 578–594. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_31
Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 738–768. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_26
Chung, H., Han, K., Ju, C., Kim, M., Seo, J.H.: Bulletproofs+: shorter proofs for a privacy-enhanced distributed ledger. IEEE Access 10, 42067–42082 (2022). https://doi.org/10.1109/ACCESS.2022.3167806
Cremers, C., Loss, J., Wagner, B.: A holistic security analysis of Monero transactions. Cryptology ePrint Archive, Report 2023/321 (2023). https://eprint.iacr.org/2023/321
Deuber, D., Ronge, V., Rückert, C.: SoK: assumptions underlying cryptocurrency deanonymizations. PoPETs 2022(3), 670–691 (2022). https://doi.org/10.56553/popets-2022-0091
Dutta, A., Bagad, S., Vijayakumaran, S.: MProve+: privacy enhancing proof of reserves protocol for Monero. IEEE Trans. Inf. Forensics Secur. 16, 3900–3915 (2021). https://doi.org/10.1109/TIFS.2021.3088035
Dutta, A., Vijayakumaran, S.: MProve: a proof of reserves protocol for Monero exchanges. In: 2019 IEEE European Symposium on Security and Privacy Workshops, EuroS &P Workshops 2019, Stockholm, Sweden, 17-19 June 2019, pp. 330–339. IEEE (2019). https://doi.org/10.1109/EuroSPW.2019.00043
Eagen, L.: Bulletproofs++. Cryptology ePrint Archive, Report 2022/510 (2022). https://eprint.iacr.org/2022/510
Egger, C., Lai, R.W.F., Ronge, V., Woo, I.K.Y., Yin, H.H.F.: On defeating graph analysis of anonymous transactions. PoPETs 2022(3), 538–557 (2022). https://doi.org/10.56553/popets-2022-0085
Esgin, M.F., Steinfeld, R., Zhao, R.K.: MatRiCT\({}^{\text{+}}\): more efficient post-quantum private blockchain payments. In: 43rd IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA, 22-26 May 2022, pp. 1281–1298. IEEE (2022). https://doi.org/10.1109/SP46214.2022.9833655
Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: efficient, scalable and post-quantum blockchain confidential transactions protocol. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 567–584. ACM Press (2019). https://doi.org/10.1145/3319535.3354200
Frost, L.: Monero developers disclose ‘significant’ bug in privacy algorithm. https://decrypt.co/76938/monero-developers-disclose-significant-bug-privacy-algorithm. Accessed 14 Feb 2023
Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2
Fuchsbauer, G., Orrù, M.: Non-interactive Mimblewimble transactions, revisited. Cryptology ePrint Archive, Report 2022/265 (2022). https://eprint.iacr.org/2022/265
Fuchsbauer, G., Orrù, M., Seurin, Y.: Aggregate cash systems: a cryptographic investigation of Mimblewimble. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 657–689. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_22
Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 181–200. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_13
Ganesh, C., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.: Fiat-shamir bulletproofs are non-malleable (in the algebraic group model). In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 397–426. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-07085-3_14
Ghoshal, A., Tessaro, S.: Tight state-restoration soundness in the algebraic group model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 64–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_3
Goodell, B., Noether, S., Blue, A.: Concise linkable ring signatures and forgery against adversarial keys. Cryptology ePrint Archive, Paper 2019/654 (2019). https://eprint.iacr.org/2019/654, https://eprint.iacr.org/2019/654
Gugger, J.: Bitcoin-monero cross-chain atomic swap. Cryptology ePrint Archive, Report 2020/1126 (2020). https://eprint.iacr.org/2020/1126
Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash Protocol Specification, Version 2022.3.8. https://zips.z.cash/protocol/protocol.pdf. Accessed 15 Feb 2023
Jedusor, T.E.: Mimblewimble. https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt. Accessed 15 Feb 2023
Jivanyan, A., Feickert, A.: Lelantus spark: Secure and flexible private transactions. Cryptology ePrint Archive, Report 2021/1173 (2021). https://eprint.iacr.org/2021/1173
Klee, C.: Monero XMR: “Signifikanter” Privacy Bug entdeckt. https://www.btc-echo.de/schlagzeilen/monero-xmr-signifikanter-privacy-bug-entdeckt-123001/. Accessed 14 Feb 2023
Koe, Alonso, K.M., Noether, S.: Zero to Monero v2.0.0. https://web.getmonero.org/library/Zero-to-Monero-2-0-0.pdf (2020). Accessed 21 Nov 2022
Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of Monero’s blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 153–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_9
Lai, R.W.F., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang, J.: Omniring: scaling private payments without trusted setup. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 31–48. ACM Press (2019). https://doi.org/10.1145/3319535.3345655
Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for Ad Hoc groups. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_28
luigi1111, “fluffypony” Spagni, R.: Disclosure of a Major Bug in CryptoNote Based Currencies. https://www.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html. Accessed 14 Feb 2023
Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge SNARKs from linear-size universal and updatable structured reference strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2111–2128. ACM Press (2019). https://doi.org/10.1145/3319535.3339817
Morais, R., Crocker, P., de Sousa, S.M.: Delegated RingCT: faster anonymous transactions. Cryptology ePrint Archive, Report 2020/1521 (2020). https://eprint.iacr.org/2020/1521
Moreno-Sanchez, P., Blue, A., Le, D.V., Noether, S., Goodell, B., Kate, A.: DLSAG: non-interactive refund transactions for interoperable payment channels in Monero. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 325–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_18
Möser, M., et al.: An empirical analysis of traceability in the Monero blockchain. PoPETs 2018(3), 143–163 (2018). https://doi.org/10.1515/popets-2018-0025
Nick, J.: A Problem With Monero’s RingCT. https://jonasnick.github.io/blog/2016/12/17/a-problem-with-ringct/. Accessed 14 Feb 2023
Nick, J.: Exploiting low order generators in one-time ring signatures. https://jonasnick.github.io/blog/2017/05/23/exploiting-low-order-generators-in-one-time-ring-signatures/. Accessed 14 Feb 2023
Noether, S.: Ring signature confidential transactions for Monero. Cryptology ePrint Archive, Report 2015/1098 (2015). https://eprint.iacr.org/2015/1098
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Project, M.: Monero-Project/Meta: List of Issues. https://github.com/monero-project/meta/issues. Accessed 11 Apr 2023
Ronge, V., Egger, C., Lai, R.W.F., Schröder, D., Yin, H.H.F.: Foundations of ring sampling. PoPETs 2021(3), 265–288 (2021). https://doi.org/10.2478/popets-2021-0047
Sui, Z., Liu, J.K., Yu, J., Qin, X.: MoNet: a fast payment channel network for scriptless cryptocurrency Monero. In: 42nd IEEE International Conference on Distributed Computing Systems, ICDCS 2022, Bologna, Italy, July 10-13, 2022, pp. 280–290. IEEE (2022). https://doi.org/10.1109/ICDCS54860.2022.00035
Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency Monero. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_25
Thyagarajan, S.A.K., Malavolta, G., Schmidt, F., Schröder, D.: PayMo: Payment channels for Monero. Cryptology ePrint Archive, Report 2020/1441 (2020). https://eprint.iacr.org/2020/1441
Tsang, P.P., Wei, V.K.: Short linkable ring signatures for E-voting, E-cash and attestation. In: Deng, R.H., Bao, F., Pang, H.H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31979-5_5
Van Saberhagen, N.: CryptoNote v2.0. https://www.bytecoin.org/old/whitepaper.pdf (2013). Accessed 21 Nov 2022
Vijayakumaran, S.: Analysis of CryptoNote transaction graphs using the Dulmage-Mendelsohn decomposition. Cryptology ePrint Archive, Report 2021/760 (2021). https://eprint.iacr.org/2021/760
Wijaya, D.A., Liu, J.K., Steinfeld, R., Liu, D.: Monero ring attack: recreating zero Mixin transaction effect. In: 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science And Engineering, TrustCom/BigDataSE 2018, New York, NY, USA, August 1-3, 2018, pp. 1196–1201. IEEE (2018). https://doi.org/10.1109/TrustCom/BigDataSE.2018.00165
Yu, J., Au, M.H.A., Veríssimo, P.J.E.: Re-thinking untraceability in the CryptoNote-style blockchain. In: Delaune, S., Jia, L. (eds.) CSF 2019 Computer Security Foundations Symposium, pp. 94–107. IEEE Computer Society Press (2019). https://doi.org/10.1109/CSF.2019.00014
Yuen, T.H., et al.: RingCT 3.0 for blockchain confidential transaction: shorter size and stronger security. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 464–483. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_25
Acknowledgments
Julian Loss and Benedikt Wagner are funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 507237585, and by the European Union, ERC-2023-STG, Project ID: 101116713. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Cremers, C., Loss, J., Wagner, B. (2024). A Holistic Security Analysis of Monero Transactions. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14653. Springer, Cham. https://doi.org/10.1007/978-3-031-58734-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-58734-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58733-7
Online ISBN: 978-3-031-58734-4
eBook Packages: Computer ScienceComputer Science (R0)