Skip to main content

Publicly Verifiable Secret Sharing Over Class Groups and Applications to DKG and YOSO

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2024 (EUROCRYPT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14655))

  • 920 Accesses

Abstract

Publicly Verifiable Secret Sharing (PVSS) allows a dealer to publish encrypted shares of a secret so that parties holding the corresponding decryption keys may later reconstruct it. Both dealing and reconstruction are non-interactive and any verifier can check their validity. PVSS finds applications in randomness beacons, distributed key generation (DKG) and in YOSO MPC (Gentry et al. CRYPTO’21), when endowed with suitable publicly verifiable re-sharing as in YOLO YOSO (Cascudo et al. ASIACRYPT’22).

We introduce a PVSS scheme over class groups that achieves similar efficiency to state-of-the art schemes that only allow for reconstructing a function of the secret, while our scheme allows the reconstruction of the original secret. Our construction generalizes the DDH-based scheme of YOLO YOSO to operate over class groups, which poses technical challenges in adapting the necessary NIZKs in face of the unknown group order and the fact that efficient NIZKs of knowledge are not as simple to construct in this setting.

Building on our PVSS scheme’s ability to recover the original secret, we propose two DKG protocols for discrete logarithm key pairs: a biasable 1-round protocol, which improves on the concrete communication/computational complexities of previous works; and a 2-round unbiasable protocol, which improves on the round complexity of previous works. We also add publicly verifiable resharing towards anonymous committees to our PVSS, so that it can be used to efficiently transfer state among committees in the YOSO setting. Together with a recent construction of MPC in the YOSO model based on class groups (Braun et al. CRYPTO’23), this results in the most efficient full realization (i.e. without assuming receiver anonymous channels) of YOSO MPC based on the CDN framework with transparent setup.

Ignacio Cascudo was partially supported by the Spanish Government under the project SecuRing (ref. PID2019-110873RJ-I00) and the PRODIGY Project (TED2021-132464B-I00), both funded by MCIN/AEI/10.13039/501100011033/. PRODIGY is also funded by the European Union NextGenerationEU/PRTR. He was also partially supported by the European Union under GA 101096435 (CONFIDENTIAL-6G). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

Bernardo David was supported by the Independent Research Fund Denmark (IRFD) grant number 0165-00079B.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Up to a constant due to the time for group operations and size for group elements in class groups being higher than those for DDH-hard groups based on elliptic curves.

  2. 2.

    In coding-theoretic this set is the dual code to the Reed-Solomon code formed by the evaluations of polynomials of degree \(\le d\).

  3. 3.

    As well as for using the ZK proof protocol from [6] which we show in next section.

  4. 4.

    The proofs were in fact introduced for slightly more involved relations, but for simplicity we adapt them for just proving knowledge of discrete logarithm.

  5. 5.

    Notation: To avoid confusion with the group \(G^q\) of q-th powers of elements from G, we denote the direct product of m copies of G, for \(m\in \mathbb {N}\), as \((G)^m\).

  6. 6.

    Recall, that by definition of \(\textrm{Lag}_{}\), \(L_i(X)=\prod _{j\in \mathcal {T}'\setminus \{i\}}\frac{X-\alpha _j}{\alpha _i-\alpha _j}\).

  7. 7.

    In practice we consider \(\kappa =40\) is reasonable.

References

  1. Acharya, A., Hazay, C., Kolesnikov, V., Prabhakaran, M.: SCALES - MPC with small clients and larger ephemeral servers. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022. LNCS, vol. 13748, pp. 502–531. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22365-5_18

    Chapter  Google Scholar 

  2. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_17

    Chapter  Google Scholar 

  3. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-64375-1_10

    Chapter  Google Scholar 

  4. Boudot, F., Traoré, J.: Efficient publicly verifiable secret sharing schemes with fast or delayed recovery. In: Varadharajan, V., Yi, M. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 87–102. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-0_8

    Chapter  Google Scholar 

  5. Bouvier, C., Castagnos, G., Imbert, L., Laguillaumie, F.: I want to ride my BICYCL : BICYCL implements cryptography in class groups. J. Cryptol. 36(3), 17 (2023)

    Article  MathSciNet  Google Scholar 

  6. Braun, L., Damgård, I., Orlandi, C.: Secure multiparty computation from threshold encryption based on class groups. In: Handschuh, H., Lysyanskaya, A., (eds.) Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part I, vol. 14081. LNCS, pp. 613–645. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38557-5_20

  7. Campanelli, M., David, B., Khoshakhlagh, H., Konring, A., Nielsen, J.B.: Encryption to the future - a paradigm for sending secret messages to future (anonymous) committees. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13793, pp. 151–180. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22969-5_6

    Chapter  Google Scholar 

  8. Cascudo, I., David, B.: SCRAPE: scalable randomness attested by public entities. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 17. LNCS, vol. 10355, pp. 537–556. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-61204-1_27

    Chapter  Google Scholar 

  9. Cascudo, I., David, B.: ALBATROSS: publicly attestable batched randomness based on secret sharing. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 311–341. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-64840-4_11

    Chapter  Google Scholar 

  10. Cascudo, I., David, B.: Publicly verifiable secret sharing over class groups and applications to DKG and YOSO. Cryptology ePrint Archive, Paper 2023/1651 (2023). https://eprint.iacr.org/2023/1651

  11. Cascudo, I., David, B., Garms, L., Konring, A.: YOLO YOSO: fast and simple encryption and secret sharing in the YOSO model. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022. LNCS, vol. 13791, pp. 651–680. Springer, Heidelberg (2022)

    Chapter  Google Scholar 

  12. Cascudo, I., David, B., Shlomovits, O., Varlakov, D.: Mt. random: multi-tiered randomness beacons. In: Tibouchi, M., Wang, X., (eds.) Applied Cryptography and Network Security - 21st International Conference, ACNS 2023, Kyoto, Japan, June 19-22, 2023, Proceedings, Part II, vol. 13906, LNCS, pages 645–674. Springer, Cham (2023.) https://doi.org/10.1007/978-3-031-33491-7_24

  13. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party ECDSA from hash proof systems and efficient instantiations. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 191–221. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-26954-8_7

    Chapter  Google Scholar 

  14. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Bandwidth-efficient threshold EC-DSA. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 266–296. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45388-6_10

    Chapter  Google Scholar 

  15. Castagnos, G., Imbert, L., Laguillaumie, F.: Encryption switching protocols revisited: Switching modulo \(p\). In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 255–287. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-63688-7_9

    Chapter  Google Scholar 

  16. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In: Nyberg, K., (ed.) Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the RSA Conference 2015, San Francisco, CA, USA, April 20-24, 2015. Proceedings, vol. 9048, LNCS, pp. 487–505. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_26

  17. Castagnos, G., Laguillaumie, F., Tucker, I.: Practical fully secure unrestricted inner product functional encryption modulo \(p\). In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 733–764. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-03329-3_25

    Chapter  Google Scholar 

  18. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: secure multiparty computation with dynamic participants. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 94–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_4

    Chapter  Google Scholar 

  19. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. David, B., et al.: Perfect MPC over layered graphs. In: Handschuh, H., Lysyanskaya, A., (eds.), Advances in Cryptology - CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings, Part I, vol. 14081, LNCS, pp. 360–392. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38557-5_12

  21. Dobson, S., Galbraith, S.D., Smith, B.: Trustless unknown-order groups. Math. Cryptol. 1(2), 25–39 (2022)

    Google Scholar 

  22. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the Fiat-Shamir transform. In: Galbraith, S.D., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_5

  23. Fouque, P.-A., Stern, J.: One round threshold discrete-log key generation without private channels. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 300–316. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_22

    Chapter  Google Scholar 

  24. Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly verifiable secret sharing and its applications. In: Nyberg, K. (ed.), EUROCRYPT 1998, vol. 1403, LNCS, pp. 32–46. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054115

  25. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

    Google Scholar 

  26. Gentry, C., et al.: YOSO: you only speak once - secure MPC with stateless ephemeral roles. In: Malkin, T., Peikert, C., (eds.) CRYPTO 2021, Part II, vol. 12826, LNCS, pp. 64–93. Springer, Heidelberg (2021)

    Google Scholar 

  27. Gentry, C., Halevi, S., Lyubashevsky, V.: Practical non-interactive publicly verifiable secret sharing with thousands of parties. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part I, vol. 13275, LNCS, pp. 458–487. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-06944-4_16

  28. Gentry, C., Halevi, S., Magri, B., Nielsen, J.B., Yakoubov, S.: Random-index PIR and applications. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13044, pp. 32–61. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-90456-2_2

    Chapter  Google Scholar 

  29. Groth, J.: Non-interactive distributed key generation and key resharing. Cryptology ePrint Archive, Paper 2021/339 (2021). https://eprint.iacr.org/2021/339

  30. Gurkan, K., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., Tomescu, A.: Aggregatable distributed key generation. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 147–176. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-77870-5_6

    Chapter  Google Scholar 

  31. Heidarvand, S., Villar, J.L.: Public verifiability from pairings in secret sharing schemes. In: Avanzi, R.M., Keliher, L., Sica, F., (eds.) SAC 2008, vol. 5381, LNCS, pp. 294–308. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_19

  32. Kate, A., Mangipudi, E.V., Mukherjee, P., Saleem, H., Aravinda, S., Thyagarajan, K.: Non-interactive VSS using class groups and application to DKG. Cryptology ePrint Archive, Paper 2023/451 (2023). https://eprint.iacr.org/2023/451

  33. Katz, J.: Round optimal robust distributed key generation. Cryptology ePrint Archive, Paper 2023/1094 (2023). https://eprint.iacr.org/2023/1094

  34. Pedersen, P.T.: A threshold cryptosystem without a trusted party (extended abstract) (rump session). In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_47

    Chapter  Google Scholar 

  35. Rachuri, R., Scholl, P.: Le Mans: dynamic and fluid MPC for dishonest majority. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13507, pp. 719–749. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15802-5_25

    Chapter  Google Scholar 

  36. Ruiz, A., Villar, J.L.: Publicly verifiable secret sharing from Paillier’s cryptosystem. In: WEWoRC 2005–Western European Workshop on Research in Cryptology (2005)

    Google Scholar 

  37. Schoenmakers, B.: A simple publicly verifiable secret sharing scheme and its application to electronic. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 148–164. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_10

    Chapter  Google Scholar 

  38. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_17

    Chapter  Google Scholar 

  39. Tucker, I.: Functional encryption and distributed signatures based on projective hash functions, the benefit of class groups. (Chiffrement fonctionnel et signatures distribuées fondés sur des fonctions de hachage à projection, l’apport des groupes de classe). Ph.D. thesis, University of Lyon, France (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Cascudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cascudo, I., David, B. (2024). Publicly Verifiable Secret Sharing Over Class Groups and Applications to DKG and YOSO. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14655. Springer, Cham. https://doi.org/10.1007/978-3-031-58740-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58740-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58739-9

  • Online ISBN: 978-3-031-58740-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics