Abstract
Classically, Private Information Retrieval (PIR) was studied in a setting without any pre-processing. In this setting, it is well-known that 1) public-key cryptography is necessary to achieve non-trivial (i.e., sublinear) communication efficiency in the single-server setting, and 2) the total server computation per query must be linear in the size of the database, no matter in the single-server or multi-server setting. Recent works have shown that both of these barriers can be overcome if we are willing to introduce a pre-processing phase. In particular, a recent work called Piano showed that using only one-way functions, one can construct a single-server preprocessing PIR with \(\widetilde{O}(\sqrt{n})\) bandwidth and computation per query, assuming \(\widetilde{O}(\sqrt{n})\) client storage. For the two-server setting, the state-of-the-art is defined by two incomparable results. First, Piano immediately implies a scheme in the two-server setting with the same performance bounds as stated above. Moreover, Beimel et al. showed a two-server scheme with \(O(n^{1/3})\) bandwidth and \(O(n/\log ^2 n)\) computation per query, and one with \(O(n^{1/2 + \epsilon })\) cost both in bandwidth and computation—both schemes provide information theoretic security.
In this paper, we show that assuming the existence of one-way functions, we can construct a two-server preprocessing PIR scheme with \(\widetilde{O}(n^{1/4})\) bandwidth and \(\widetilde{O}(n^{1/2})\) computation per query, while requiring only \(\widetilde{O}(n^{1/2})\) client storage. We also construct a new single-server preprocessing PIR scheme with \(\widetilde{O}(n^{1/4})\) online bandwidth and \(\widetilde{O}(n^{1/2})\) offline bandwidth and computation per query, also requiring \(\widetilde{O}(n^{1/2})\) client storage. Specifically, the online bandwidth is the bandwidth required for the client to obtain an answer, and the offline bandwidth can be viewed as background maintenance work amortized to each query. Our new constructions not only advance the theoretical understanding of preprocessing PIR, but are also concretely efficient because the only cryptography needed is pseudorandom functions.
Author ordering is randomized. Full version: https://eprint.iacr.org/2023/1574.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beigel, R., Fortnow, L., Gasarch, W.I.: A nearly tight bound for private information retrieval protocols. In: Electronic Colloquium on Computational Complexity (ECCC) (2003)
Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private information retrieval: PIR with preprocessing. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 55–73. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_4
Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from standard lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_15
Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_17
Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_10
Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_28
Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC\(^1\) from LWE. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_16
Chang, Y.-C.: Single database private information retrieval with logarithmic communication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_5
Chor, B., Gilboa, N.: Computationally private information retrieval. In: STOC (1997)
Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: FOCS (1995)
Connell, G.: Technology deep dive: Building a faster ORAM layer for enclaves. https://signal.org/blog/building-faster-oram/
Corrigan-Gibbs, H., Henzinger, A., Kogan, D.: Single-server private information retrieval with sublinear amortized time. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. Lecture Notes in Computer Science, vol. 13276, pp. 3–33. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_1
Corrigan-Gibbs, H., Kogan, D.: Private information retrieval with sublinear online time. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 44–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_3
Demmler, D., Rindal, P., Rosulek, M., Trieu, N.: PIR-PSI: scaling private contact discovery. Proc. Priv. Enhancing Technol. 2018(4), 159–178 (2018)
Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single database private information retrieval implies oblivious transfer. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 122–138. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_10
Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_1
Dvir, Z., Gopi, S.: 2-server PIR with subpolynomial communication. J. ACM 63(4) (2016)
Feamster, N.: Oblivious DNS deployed by Cloudflare and Apple. https://medium.com/noise-lab/oblivious-dns-deployed-by-cloudflare-and-apple-1522ccf53cab
Gasarch, W.I.: A survey on private information retrieval. Bull. EATCS 82, 72–107 (2004)
Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_65
Henzinger, A., Dauterman, E., Corrigan-Gibbs, H., Zeldovich, N.: Private web search with Tiptoe. In: 29th ACM Symposium on Operating Systems Principles (SOSP), Koblenz, Germany (2023)
Henzinger, A., Hong, M.M., Corrigan-Gibbs, H., Meiklejohn, S., Vaikuntanathan, V.: One server for the price of two: simple and fast single-server private information retrieval. Cryptology ePrint Archive, Paper 2022/949 (2022). https://eprint.iacr.org/2022/949
Hoang, V.T., Morris, B., Rogaway, P.: An enciphering scheme based on a card shuffle. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 1–13. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_1
Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, Seattle, Washington, USA, 14–17 May 1989, pp. 44–61. ACM (1989)
Kogan, D., Corrigan-Gibbs, H.: Private blocklist lookups with checklist. In: 30th USENIX Security Symposium (USENIX Security 2021), pp. 875–892. USENIX Association (2021). https://www.usenix.org/conference/usenixsecurity21/presentation/kogan
Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: FOCS (1997)
Lazzaretti, A., Papamanthou, C.: Single server PIR with sublinear amortized time and polylogarithmic bandwidth. Cryptology ePrint Archive, Paper 2022/830 (2022). https://eprint.iacr.org/2022/830
Lazzaretti, A., Papamanthou, C.: TreePIR: sublinear-time and polylog-bandwidth private information retrieval from DDH. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, vol. 14082, pp. 284–314. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38545-2_10
Lin, W.K., Mook, E., Wichs, D.: Doubly efficient private information retrieval and fully homomorphic ram computation from ring LWE. In: STOC (2023)
Lipmaa, H.: First CPIR protocol with data-dependent computation. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14423-3_14
Melchor, C.A., Crespin, B., Gaborit, P., Jolivet, V., Rousseau, P.: High-speed private information retrieval computation on GPU. In: Proceedings of the 2008 Second International Conference on Emerging Security Information, Systems and Technologies, SECURWARE 2008, Washington, DC, USA, pp. 263–272. IEEE Computer Society (2008)
Melchor, C.A., Gaborit, P.: A lattice-based computationally-efficient private information retrieval protocol. IACR Cryptology ePrint Archive 2007, 446 (2007)
Menon, S.J., Wu, D.J.: Spiral: fast, high-rate single-server PIR via FHE composition. In: IEEE S &P (2022)
Mughees, M.H., Sun, I., Ren, L.: Simple and practical amortized sublinear private information retrieval. Cryptology ePrint Archive, Paper 2023/1072 (2023)
Olumofin, F., Goldberg, I.: Revisiting the computational practicality of private information retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–172. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27576-0_13
Ostrovsky, R., Skeith, W.E.: A survey of single-database private information retrieval: techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_26
Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
Ristenpart, T., Yilek, S.: The mix-and-cut shuffle: small-domain encryption secure against N queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 392–409. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_22
Shi, E., Aqeel, W., Chandrasekaran, B., Maggs, B.: Puncturable pseudorandom sets and private information retrieval with near-optimal online bandwidth and time. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 641–669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_22
Sion, R., Carbunar, B.: On the computational practicality of private information retrieval. In: Network and Distributed Systems Security Symposium (NDSS) (2007)
Yeo, K.: Cuckoo hashing in cryptography: optimal parameters, robustness and applications. arXiv preprint arXiv:2306.11220 (2023)
Zhou, M., Lin, W.K., Tselekounis, Y., Shi, E.: Optimal single-server private information retrieval. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14004, pp. 395–425. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30545-0_14
Zhou, M., Park, A., Shi, E., Zheng, W.: Piano: extremely simple, single-server PIR with sublinear server computation. In: IEEE S & P (2024)
Acknowledgments
This work is in part supported by a grant from ONR, a grant from the DARPA SIEVE program under a subcontract from SRI, a gift from Cisco, Samsung MSL, NSF awards under grant numbers 1705007, 2128519 and 2044679.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Ghoshal, A., Zhou, M., Shi, E. (2024). Efficient Pre-processing PIR Without Public-Key Cryptography. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14656. Springer, Cham. https://doi.org/10.1007/978-3-031-58751-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-58751-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58750-4
Online ISBN: 978-3-031-58751-1
eBook Packages: Computer ScienceComputer Science (R0)