Skip to main content

Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2024 (EUROCRYPT 2024)

Abstract

Weak forward secrecy (wFS) of authenticated key exchange (AKE) protocols is a passive variant of (full) forward secrecy (FS). A natural mechanism to upgrade from wFS to FS is the use of key confirmation messages which compute a message authentication code (MAC) over the transcript. Unfortunately, Gellert, Gjøsteen, Jacobson and Jager (GGJJ, CRYPTO 2023) show that this mechanism inherently incurs a loss proportional to the number of users, leading to an overall non-tight reduction, even if wFS was established using a tight reduction.

Inspired by GGJJ, we propose a new notion, called one-way verifiable weak forward secrecy (OW-VwFS), and prove that OW-VwFS can be transformed tightly to FS using key confirmation in the random oracle model (ROM). To implement our generic transformation, we show that several tightly wFS AKE protocols additionally satisfy our OW-VwFS notion tightly. We highlight that using the recent lattice-based protocol from Pan, Wagner, and Zeng (CRYPTO 2023) can give us the first lattice-based tightly FS AKE via key confirmation in the classical random oracle model. Besides this, we also obtain a Decisional-Diffie-Hellman-based protocol that is considerably more efficient than the previous ones.

Finally, we lift our study on FS via key confirmation to the quantum random oracle model (QROM). While our security reduction is overall non-tight, it matches the best existing bound for wFS in the QROM (Pan, Wagner, and Zeng, ASIACRYPT 2023), namely, it is square-root- and session-tight. Our analysis is in the multi-challenge setting, and it is more realistic than the single-challenge setting as in Pan et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Their lattice-based protocol is almost tight (similar to [9]), since it needs to lose a factor of \(O(\lambda )\) to the LWE assumption, where \(\lambda \) is the security parameter. We call it tight as well, but specify the concrete loss in our theorems and proofs.

  2. 2.

    Cf. https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/.

  3. 3.

    We define three different hash functions here which allows us to model them as independent random oracles. When instantiating the hash functions with the same function, one would need to use appropriate domain separation.

  4. 4.

    Since we cannot check correctness efficiently in the reduction which we will build in the next step, we explicitly perform the test here for all sessions in \(\mathcal {S}\). However, if \(\mathcal {S}\) indeed contains two sessions, then by correctness, this key (and thus the outcome) will be the same.

References

  1. Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 65–84. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_6

  2. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_18

  3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

  4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

  5. Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint Archive, Report 2018/526 (2018). https://eprint.iacr.org/2018/526

  6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

  7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28

  8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-03332-3_15

  9. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_25

  10. Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly efficient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-26954-8_25

  11. Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange protocols. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021, Part II. LNCS, vol. 12727, pp. 448–479. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-78375-4_18

  12. Delpech de Saint Guilhem, C., Fischlin, M., Warinschi, B.: Authentication in key-exchange: definitions, relations and composition. In: Jia, L., Küsters, R. (eds.) CSF 2020 Computer Security Foundations Symposium, pp. 288–303. IEEE Computer Society Press (2020). https://doi.org/10.1109/CSF49147.2020.00028

  13. Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with tight multi-user security. In: Garay, J. (ed.) PKC 2021, Part II. LNCS, vol. 12711, pp. 1–31. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-75248-4_1

  14. Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically sound cryptographic parameters for real-world deployments. J. Cryptol. 34(3), 30 (2021). https://doi.org/10.1007/s00145-021-09388-x

  15. Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key exchange: a formal treatment and implications for TLS 1.3. In: 2016 IEEE Symposium on Security and Privacy, pp. 452–469. IEEE Computer Society Press, May 2016. https://doi.org/10.1109/SP.2016.34

  16. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_17

  17. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_1

  18. Gellert, K., Gjøsteen, K., Jacobsen, H., Jager, T.: On optimal tightness for key exchange with full forward secrecy via key confirmation. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-38551-3_10

  19. Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95–125. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96881-0_4

  20. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 389–422. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45388-6_14

  21. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key exchange, revisited. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 117–146. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-77870-5_5

  22. Kawashima, T., Takashima, K., Aikawa, Y., Takagi, T.: An efficient authenticated key exchange from random self-reducibility on CSIDH. In: Hong, D. (ed.) ICISC 2020. LNCS, vol. 12593, pp. 58–84. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-68890-5_4

  23. de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with optimal tightness. In: Dunkelman, O., Jacobson Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 451–479. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-81652-0_18

  24. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_33

  25. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (Nov (2007)

    Google Scholar 

  26. Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-64834-3_27

  27. Pan, J., Qian, C., Ringerud, M.: Signed (group) Diffie-Hellman key exchange with tight security. J. Cryptol. 35(4), 26 (2022). https://doi.org/10.1007/s00145-022-09438-y

    Article  MathSciNet  Google Scholar 

  28. Pan, J., Riepel, D., Zeng, R.: Key exchange with tight (full) forward secrecy via key confirmation. In: Cryptology ePrint Archive (2024)

    Google Scholar 

  29. Pan, J., Wagner, B.: Lattice-based signatures with tight adaptive corruptions and more. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS, vol. 13178, pp. 347–378. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-030-97131-1_12

  30. Pan, J., Wagner, B., Zeng, R.: Lattice-based authenticated key exchange with tight security. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-38554-4_20

  31. Pan, J., Wagner, B., Zeng, R.: Tighter security for generic authenticated key exchange in the QROM. In: ASIACRYPT 2023. LNCS, Springer, Heidelberg (2023). https://doi.org/10.1007/978-981-99-8730-6_13, https://eprint.iacr.org/2023/1380

  32. Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_8

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable comments on better motivating our works and comparisons with the related work. Doreen Riepel was supported in part by Bellare’s KACST grant. Jiaxin Pan was supported in part by the Research Council of Norway (RCN) under Project No. 324235, and Runzhi Zeng were supported by the same project from RCN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxin Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, J., Riepel, D., Zeng, R. (2024). Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14657. Springer, Cham. https://doi.org/10.1007/978-3-031-58754-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58754-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58753-5

  • Online ISBN: 978-3-031-58754-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics