Abstract
Weak forward secrecy (wFS) of authenticated key exchange (AKE) protocols is a passive variant of (full) forward secrecy (FS). A natural mechanism to upgrade from wFS to FS is the use of key confirmation messages which compute a message authentication code (MAC) over the transcript. Unfortunately, Gellert, Gjøsteen, Jacobson and Jager (GGJJ, CRYPTO 2023) show that this mechanism inherently incurs a loss proportional to the number of users, leading to an overall non-tight reduction, even if wFS was established using a tight reduction.
Inspired by GGJJ, we propose a new notion, called one-way verifiable weak forward secrecy (OW-VwFS), and prove that OW-VwFS can be transformed tightly to FS using key confirmation in the random oracle model (ROM). To implement our generic transformation, we show that several tightly wFS AKE protocols additionally satisfy our OW-VwFS notion tightly. We highlight that using the recent lattice-based protocol from Pan, Wagner, and Zeng (CRYPTO 2023) can give us the first lattice-based tightly FS AKE via key confirmation in the classical random oracle model. Besides this, we also obtain a Decisional-Diffie-Hellman-based protocol that is considerably more efficient than the previous ones.
Finally, we lift our study on FS via key confirmation to the quantum random oracle model (QROM). While our security reduction is overall non-tight, it matches the best existing bound for wFS in the QROM (Pan, Wagner, and Zeng, ASIACRYPT 2023), namely, it is square-root- and session-tight. Our analysis is in the multi-challenge setting, and it is more realistic than the single-challenge setting as in Pan et al.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Their lattice-based protocol is almost tight (similar to [9]), since it needs to lose a factor of \(O(\lambda )\) to the LWE assumption, where \(\lambda \) is the security parameter. We call it tight as well, but specify the concrete loss in our theorems and proofs.
- 2.
- 3.
We define three different hash functions here which allows us to model them as independent random oracles. When instantiating the hash functions with the same function, one would need to use appropriate domain separation.
- 4.
Since we cannot check correctness efficiently in the reduction which we will build in the next step, we explicitly perform the test here for all sessions in \(\mathcal {S}\). However, if \(\mathcal {S}\) indeed contains two sessions, then by correctness, this key (and thus the outcome) will be the same.
References
Abdalla, M., Fouque, P.A., Pointcheval, D.: Password-based authenticated key exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 65–84. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_6
Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_18
Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21
Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25
Bernstein, D.J., Persichetti, E.: Towards KEM unification. Cryptology ePrint Archive, Report 2018/526 (2018). https://eprint.iacr.org/2018/526
Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3
Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28
Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-03332-3_15
Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_25
Cohn-Gordon, K., Cremers, C., Gjøsteen, K., Jacobsen, H., Jager, T.: Highly efficient key exchange protocols with optimal tightness. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 767–797. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-26954-8_25
Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange protocols. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021, Part II. LNCS, vol. 12727, pp. 448–479. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-78375-4_18
Delpech de Saint Guilhem, C., Fischlin, M., Warinschi, B.: Authentication in key-exchange: definitions, relations and composition. In: Jia, L., Küsters, R. (eds.) CSF 2020 Computer Security Foundations Symposium, pp. 288–303. IEEE Computer Society Press (2020). https://doi.org/10.1109/CSF49147.2020.00028
Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with tight multi-user security. In: Garay, J. (ed.) PKC 2021, Part II. LNCS, vol. 12711, pp. 1–31. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-75248-4_1
Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically sound cryptographic parameters for real-world deployments. J. Cryptol. 34(3), 30 (2021). https://doi.org/10.1007/s00145-021-09388-x
Fischlin, M., Günther, F., Schmidt, B., Warinschi, B.: Key confirmation in key exchange: a formal treatment and implications for TLS 1.3. In: 2016 IEEE Symposium on Security and Privacy, pp. 452–469. IEEE Computer Society Press, May 2016. https://doi.org/10.1109/SP.2016.34
Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_17
Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_1
Gellert, K., Gjøsteen, K., Jacobsen, H., Jager, T.: On optimal tightness for key exchange with full forward secrecy via key confirmation. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-38551-3_10
Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and authenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95–125. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96881-0_4
Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 389–422. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45388-6_14
Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated key exchange, revisited. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 117–146. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-77870-5_5
Kawashima, T., Takashima, K., Aikawa, Y., Takagi, T.: An efficient authenticated key exchange from random self-reducibility on CSIDH. In: Hong, D. (ed.) ICISC 2020. LNCS, vol. 12593, pp. 58–84. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-68890-5_4
de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with optimal tightness. In: Dunkelman, O., Jacobson Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 451–479. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-81652-0_18
Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_33
LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (Nov (2007)
Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 785–814. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-64834-3_27
Pan, J., Qian, C., Ringerud, M.: Signed (group) Diffie-Hellman key exchange with tight security. J. Cryptol. 35(4), 26 (2022). https://doi.org/10.1007/s00145-022-09438-y
Pan, J., Riepel, D., Zeng, R.: Key exchange with tight (full) forward secrecy via key confirmation. In: Cryptology ePrint Archive (2024)
Pan, J., Wagner, B.: Lattice-based signatures with tight adaptive corruptions and more. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS, vol. 13178, pp. 347–378. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-030-97131-1_12
Pan, J., Wagner, B., Zeng, R.: Lattice-based authenticated key exchange with tight security. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-38554-4_20
Pan, J., Wagner, B., Zeng, R.: Tighter security for generic authenticated key exchange in the QROM. In: ASIACRYPT 2023. LNCS, Springer, Heidelberg (2023). https://doi.org/10.1007/978-981-99-8730-6_13, https://eprint.iacr.org/2023/1380
Unruh, D.: Revocable quantum timed-release encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 129–146. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_8
Acknowledgements
We thank the anonymous reviewers for their valuable comments on better motivating our works and comparisons with the related work. Doreen Riepel was supported in part by Bellare’s KACST grant. Jiaxin Pan was supported in part by the Research Council of Norway (RCN) under Project No. 324235, and Runzhi Zeng were supported by the same project from RCN.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Pan, J., Riepel, D., Zeng, R. (2024). Key Exchange with Tight (Full) Forward Secrecy via Key Confirmation. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14657. Springer, Cham. https://doi.org/10.1007/978-3-031-58754-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-58754-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58753-5
Online ISBN: 978-3-031-58754-2
eBook Packages: Computer ScienceComputer Science (R0)