Skip to main content

Cryptanalysis of Rank-2 Module-LIP in Totally Real Number Fields

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2024 (EUROCRYPT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14657))

  • 758 Accesses

Abstract

We formally define the Lattice Isomorphism Problem for module lattices (module-LIP) in a number field K. This is a generalization of the problem defined by Ducas, Postlethwaite, Pulles, and van Woerden (Asiacrypt 2022), taking into account the arithmetic and algebraic specificity of module lattices from their representation using pseudo-bases. We also provide the corresponding set of algorithmic and theoretical tools for the future study of this problem in a module setting. Our main contribution is an algorithm solving module-LIP for modules of rank 2 in \(K^2\), when K is a totally real number field. Our algorithm exploits the connection between this problem, relative norm equations and the decomposition of algebraic integers as sums of two squares. For a large class of modules (including \(\mathcal {O}_K^2\)), and a large class of totally real number fields (including the maximal real subfield of cyclotomic fields) it runs in classical polynomial time in the degree of the field and the residue at 1 of the Dedekind zeta function of the field (under reasonable number theoretic assumptions). We provide a proof-of-concept code running over the maximal real subfield of cyclotomic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Lattices are geometric objects, so an isomorphism between lattices should respect the group structure and the geometry.

  2. 2.

    https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures.

  3. 3.

    Our algorithm relies on arithmetic properties of the module, and does not extend to modules \(M \subset K_\mathbb {R}^2\), where \(K_\mathbb {R}:= K \otimes _\mathbb {Q}\mathbb {R}\).

  4. 4.

    This definition is not formulated exactly in the same way as Definition 3.11 below, but both are equivalent.

  5. 5.

    The set of \(z \in \mathcal {O}_L\) with \(z \bar{z} = a\) might be strictly larger than the set of solutions, since we may have \(\mathcal {O}_K+ i \mathcal {O}_K\subsetneq \mathcal {O}_L\), but we can easily check, given a \(z = x + iy\) if (xy) is a solution to our equation.

  6. 6.

    Note that \(\mathcal {O}_K\) is a Dedekind ring. In particular, it is Noetherian, so all ideals are finitely generated as \(\mathcal {O}_K\)-module.

  7. 7.

    When \(M \subset K^l\) is a rational module, these are the conditions for U to be a pseudo-base change matrix, see [9].

  8. 8.

    The element x is recovered up to a root of unity.

  9. 9.

    In prior literature, this is sometimes called Humbert forms.

  10. 10.

    For the transitivity ; let \(\boldsymbol{G} = (G, (I_i)_{1 \le i \le \ell }),\) \(\boldsymbol{G'} = (G', (J_i)_{1 \le i \le \ell }),\) \(\boldsymbol{G''} = (G'', (L_i)_{1 \le i \le \ell })\) and U (resp. \(U'\)) a congruence matrix between \(\boldsymbol{G}\) and \(\boldsymbol{G'}\) (resp. between \(\boldsymbol{G'}\) and \(\boldsymbol{G''})\), then \(U'' := U \cdot U'\) satisfies \(G'' = {U''}^*\cdot G \cdot U''\) and has coefficients \(U''_{i,j} = \sum _{k=1}^\ell u_{i,k} \cdot u'_{k,j}\). All terms of the sum are in \(I_i J_j^{-1}\) by definition. The same observation for \((U'')^{-1}\) finally gives \(\boldsymbol{G} \sim \boldsymbol{G''}\).

  11. 11.

    By good, we mean here a (pseudo)-basis with rational coefficients. This will be needed for our attack, and we do not know how to recover it efficiently from the (pseudo-)Gram matrix since Cholesky decomposition only provides a basis with coefficients in \(\mathbb {R}\) (or \(K_\mathbb {R}\)).

  12. 12.

    The same terminology is used for, e.g., the LWE problem. We usually say that nmq are parameters of the problem, which means that for each choice of (nmq), we have a different algorithmic problem.

  13. 13.

    Here M is a free module so it has a basis (equivalently, the coefficient ideals are equal to \(\mathcal {O}_K\)) so the authors use bases (resp. Gram-matrices) instead of pseudo-bases (resp. pseudo-Gram matrices).

  14. 14.

    Here we also use the general fact that for two events A and B, we can upper bound Pr\((A \cap B) =\) Pr(A) - Pr\((A \cap \lnot B) \ge \) Pr\((A) -\)Pr\((\lnot B).\).

References

  1. Belabas, K., van Hoeij, M., Klüners, J., Steel, A..: Factoring polynomials over global fields. Journal de théorie des nombres de Bordeaux 21(1), 15–39 (2009). https://doi.org/10.5802/jtnb.655

  2. Bennett, H., Ganju, A., Peetathawatchai, P., Stephens-Davidowitz, N.: Just how hard are rotations of \(\mathbb{Z}^n\)? algorithms and cryptography with the simplest lattice. In: Hazay, C., Stam, M. (eds.) Advances in Cryptology. EUROCRYPT 2023. LNCS, vol. 14008, pp. 252–281. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30589-4_9

  3. Bhargava, M., Shankar, A., Taniguchi, T., Thorne, F., Tsimerman, J., Zhao, Y.: Bounds on 2-torsion in class groups of number fields and integral points on elliptic curves. J. Am. Math. Soc. 33(4), 1087–1099 (2020)

    Article  MathSciNet  Google Scholar 

  4. Boer, K.D.: Random walks on Arakelov class groups. Ph.D. thesis, Leiden University (2022)

    Google Scholar 

  5. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 575–584 (2013)

    Google Scholar 

  6. Bruin, P.J., Ducas, L., Gibbons, S.: Genus distribution of random q-ary lattices. Cryptology ePrint Archive (2022)

    Google Scholar 

  7. Buchmann, J.A., Lenstra, H.W.: Computing maximal orders and factoring over \(\mathbb{Z}_{p}\). Preprint (1994)

    Google Scholar 

  8. Buchmann, J.A., Lenstra, H.W.: Approximatting rings of integers in number fields. Journal de théorie des nombres de Bordeaux 6(2), 221–260 (1994)

    Article  MathSciNet  Google Scholar 

  9. Cohen, H.: Advanced Topics in Computational Number Theory, vol. 193. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-8489-0

  10. Cohen, H.: A Course in Computational Algebraic Number Theory, vol. 138. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-02945-9

  11. Ducas, L.: Provable lattice reduction of \(\mathbb{Z}^{n}\) with blocksize n/2. Cryptology ePrint Archive (2023)

    Google Scholar 

  12. Ducas, L., Gibbons, S.: Hull attacks on the lattice isomorphism problem. In: Boldyreva, A., Kolesnikov, V. (eds.) Public-key cryptography. PKC 2023. LNCS, vol. 13940, pp. 177–204. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31368-4_7

  13. Ducas, L., Postlethwaite, E.W., Pulles, L.N., Woerden, W.V.: HAWK: module LIP makes lattice signatures fast, compact and simple. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology. ASIACRYPT 2022. LNCS, vol. 13794, pp. 65–94. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22972-5_3

  14. Ducas, L., van Woerden, W.: On the lattice isomorphism problem, quadratic forms, remarkable lattices, and cryptography. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology. EUROCRYPT 2022. LNCS, vol. 13277, pp. 643–673. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_23

  15. Felderhoff, J., Pellet-Mary, A., Stehlé, D., Wesolowski, B.: Ideal-SVP is hard for small-norm uniform prime ideals. In: Rothblum, G., Wee, H. (eds.) Theory of Cryptography. TCC 2023. LNCS, vol. 14372, pp. 63–92. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48624-1_3

  16. Fieker, C., Stehlé, D.: Short bases of lattices over number fields. In: Hanrot, G., Morain, F., Thomé, E. (eds.) Algorithmic Number Theory. ANTS-IX. LNCS, vol. 6197, pp. 157–173. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14518-6_15

  17. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In: Knudsen, L.R. (ed.) Advances in Cryptology. EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_20

  18. Haviv, I., Regev, O.: On the lattice isomorphism problem. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 391–404. SIAM (2014)

    Google Scholar 

  19. Howgrave-Graham, N., Szydlo, M.: A method to solve cyclotomic norm equations \(f * \bar{f}\). In: Buell, D. (ed.) Algorithmic Number Theory. LNCS, vol. 3076, pp. 272–279. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24847-7_20

  20. Kirchner, P.: Algorithms on ideal over complex multiplication order. arXiv preprint arXiv:1602.09037 (2016)

  21. Lenstra, H.W., Jr., Silverberg, A.: Testing isomorphism of lattices over cm-orders. SIAM J. Comput. 48(4), 1300–1334 (2019)

    Article  MathSciNet  Google Scholar 

  22. Louboutin, S.: Explicit bounds for residues of dedekind zeta functions, values of l-functions at s= 1, and relative class numbers. J. Num. Theory 85(2), 263–282 (2000)

    Article  MathSciNet  Google Scholar 

  23. Mehta, S.K., Rajasree, M.S.: On the bases of z n lattice. In: 2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 100–107. IEEE (2022)

    Google Scholar 

  24. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  Google Scholar 

  25. Mureau, G., Pellet-Mary, A., Pliatsok, G., Wallet, A.: Cryptanalysis of rank-2 module-lip in totally real number fields. Cryptology ePrint Archive (2024)

    Google Scholar 

  26. Neukirch, J.: Algebraic Number Theory, vol. 322. Springer, New York (2013). https://doi.org/10.1007/978-1-4612-0853-2

  27. Serre, J.P.: Local Fields, vol. 67. Springer, New York (2013). https://doi.org/10.1007/978-1-4757-5673-9

  28. The PARI Group. Univ. Bordeaux: PARI/GP version 2.16.2 (2024). http://pari.math.u-bordeaux.fr/

  29. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 10.3.0) (2024). https://www.sagemath.org

  30. Washington, L.C.: Introduction to Cyclotomic Fields, vol. 83. Springer, New York (1997). https://doi.org/10.1007/978-1-4612-1934-7

Download references

Acknowledgments

We are grateful to Aurel Page and Bill Allombert for their help with the implementation of the Gentry-Szydlo algorithm, Sébastien Labbé, Xavier Caruso and Vincent Delecroix for organizing the Sage Days 125, where a significant part of the implementation took place. Thanks to Paul Kirchner and Thomas Espitau for their preliminary implementation of Gentry-Szydlo that helped for proof-of-concepts. Finally we thank Koen de Boer and Wessel van Woerden for enlightening discussions.

Guilhem Mureau and Alice Pellet-Mary were supported by the CHARM ANR-NSF grant (ANR-21-CE94-0003). All the authors were supported by the PEPR quantique France 2030 programme (ANR-22-PETQ-0008). Alice Pellet-Mary was supported by the TOTORO ANR (ANR-23-CE48-0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilhem Mureau .

Editor information

Editors and Affiliations

Ethics declarations

Nothing to report.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mureau, G., Pellet-Mary, A., Pliatsok, G., Wallet, A. (2024). Cryptanalysis of Rank-2 Module-LIP in Totally Real Number Fields. In: Joye, M., Leander, G. (eds) Advances in Cryptology – EUROCRYPT 2024. EUROCRYPT 2024. Lecture Notes in Computer Science, vol 14657. Springer, Cham. https://doi.org/10.1007/978-3-031-58754-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58754-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58753-5

  • Online ISBN: 978-3-031-58754-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics