Skip to main content

Towards Compact Identity-Based Encryption on Ideal Lattices

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2024 (CT-RSA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14643))

Included in the following conference series:

Abstract

Basic encryption and signature on lattices have comparable efficiency to their classical counterparts in terms of speed and key size. However, Identity-based Encryption (IBE) on lattices is much less efficient in terms of compactness, even when instantiated on ideal lattices and in the Random Oracle Model (ROM). This is because the underlying preimage sampling algorithm used to extract the users’ secret keys requires huge public parameters. In this work, we specify a compact IBE instantiation for practical use by introducing various optimizations. Specifically, we first propose a modified gadget that offers a tradeoff between security and compactness, making it more suitable for the instantiation of practical IBEs. Then, by incorporating our gadget and the non-spherical Gaussian technique, we provide an efficient preimage sampling algorithm, based on which, we give a specification of a compact IBE on ideal lattice. Finally, two parameter sets and a proof-of-concept implementation are presented. Given the importance of the preimage sampling algorithm in lattice-based cryptography, we believe that our technique can also be applied to the practical instantiation of other advanced cryptographic schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) Advances in Cryptology - EUROCRYPT 2010. Lecture Notes in Computer Science, vol. 6110, pp. 553–572. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  Google Scholar 

  2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) Advances in Cryptology - CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223, pp. 98–115. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-14623-7_6

    Chapter  Google Scholar 

  3. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108 (1996)

    Google Scholar 

  4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a new hope. In: USENIX Security 2016, pp. 327–343 (2016)

    Google Scholar 

  5. Apon, D., Fan, X., Liu, F.H.: Compact identity based encryption from LWE. Cryptology ePrint Archive, Report 2016/125 (2016)

    Google Scholar 

  6. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: SODA 2016, pp. 10–24 (2016)

    Google Scholar 

  7. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selective opening attack. In: Ishai, Y. (ed.) Theory of Cryptography. Lecture Notes in Computer Science, vol. 6597, pp. 235–252. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-19571-6_15

    Chapter  Google Scholar 

  8. Bert, P., Eberhart, G., Prabel, L., Roux-Langlois, A., Sabt, M.: Implementation of lattice trapdoors on modules and applications. In: Cheon, J.H., Tillich, J.P. (eds.) Post-Quantum Cryptography. Lecture Notes in Computer Science(), vol. 12841, pp. 195–214. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_11

    Chapter  Google Scholar 

  9. Bert, P., Fouque, P.A., Roux-Langlois, A., Sabt, M.: Practical implementation of Ring-SIS/LWE based signature and IBE. In: Lange, T., Steinwandt, R. (eds.) Post-Quantum Cryptography. Lecture Notes in Computer Science(), vol. 10786, pp. 271–291. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_13

    Chapter  Google Scholar 

  10. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revocation. In: ACM CCS 2008, pp. 417–426 (2008)

    Google Scholar 

  11. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) Advances in Cryptology - CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, pp. 213–229. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  12. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage resilience and circular security from new assumptions. In: Nielsen, J., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018. Lecture Notes in Computer Science(), vol. 10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_20

    Chapter  Google Scholar 

  13. Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions under entropic ring LWE. In: ITCS 2016, pp. 147–156 (2016)

    Google Scholar 

  14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) Advances in Cryptology - EUROCRYPT 2010. Lecture Notes in Computer Science, vol. 6110, pp. 523–552. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  15. Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices and smaller hash-and-sign signatures. In: Galbraith, S., Moriai, S. (eds.) Advances in Cryptology - ASIACRYPT 2019. Lecture Notes in Computer Science(), vol. 11923, pp. 3–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_1

    Chapter  Google Scholar 

  16. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) Advances in Cryptology - ASIACRYPT 2011. Lecture Notes in Computer Science, vol. 7073, pp. 1–20. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-25385-0_1

    Chapter  Google Scholar 

  17. Chung, C.M.M., et al.: NTT multiplication for NTT-unfriendly rings: new speed records for saber and NTRU on Cortex-M4 and AVX2. IACR Trans. CHES 2021 (2), 159–188 (2021)

    Google Scholar 

  18. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding. Lecture Notes in Computer Science, vol. 2260, pp. 360–363. Springer, Berlin (2001). https://doi.org/10.1007/3-540-45325-3_32

    Chapter  Google Scholar 

  19. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology - CRYPTO 2017. Lecture Notes in Computer Science(), vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_18

    Chapter  Google Scholar 

  20. Ducas, L., Galbraith, S., Prest, T., Yu, Y.: Integral matrix gram root and lattice gaussian sampling without floats. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology - EUROCRYPT 2020. Lecture Notes in Computer Science(), vol. 12106, pp. 608–637. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_21

    Chapter  Google Scholar 

  21. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT 2014. Lecture Notes in Computer Science, vol. 8874, pp. 22–41. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-45608-8_2

    Chapter  Google Scholar 

  22. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) Advances in Cryptology - ASIACRYPT 2012. Lecture Notes in Computer Science, vol. 7658, pp. 433–450. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-34961-4_27

    Chapter  Google Scholar 

  23. Ducas, L., Prest, T.: Fast fourier orthogonalization. In: ISSAC 2016, pp. 191–198 (2016)

    Google Scholar 

  24. Espitau, T., et al.: MITAKA: a simpler, parallelizable, maskable variant of FALCON. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology - EUROCRYPT 2022. Lecture Notes in Computer Science, vol. 13277, pp. 222–253. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_9

    Chapter  Google Scholar 

  25. Espitau, T., Tibouchi, M., Wallet, A., Yang, Yu.: Shorter hash-and-sign lattice-based signatures. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology - CRYPTO 2022. Lecture Notes in Computer Science, vol. 13508, pp. 245–275. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_9

    Chapter  Google Scholar 

  26. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) Public Key Cryptography - PKC 2012. Lecture Notes in Computer Science, vol. 7293, pp. 467–484. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-30057-8_28

    Chapter  Google Scholar 

  27. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum cost. In: Public Key Cryptography. Lecture Notes in Computer Science, vol. 1560, pp. 53–68. Springer, Berlin (1999). https://doi.org/10.1007/3-540-49162-7_5

    Chapter  Google Scholar 

  28. Genise, N., Micciancio, D.: Faster gaussian sampling for trapdoor lattices with arbitrary modulus. In: Nielsen, J., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018. Lecture Notes in Computer Science(), vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_7

    Chapter  Google Scholar 

  29. Genise, N., Micciancio, D., Peikert, C., Walter, M.: Improved discrete gaussian and subgaussian analysis for lattice cryptography. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) Public-Key Cryptography - PKC 2020. Lecture Notes in Computer Science(), vol. 12110, pp. 623–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_21

    Chapter  Google Scholar 

  30. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)

    Google Scholar 

  31. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski, B.S. (ed.) Advances in Cryptology - CRYPTO 1997. Lecture Notes in Computer Science, vol. 1294, pp. 112–131. Springer, Berlin (1997). https://doi.org/10.1007/BFb0052231

    Chapter  Google Scholar 

  32. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC 2013, pp. 545–554 (2013)

    Google Scholar 

  33. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology - CRYPTO 2015. Lecture Notes in Computer Science(), vol. 9216, pp. 503–523. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-48000-7_25

    Chapter  Google Scholar 

  34. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSIGN: digital signatures using the NTRU lattice. In: Joye, M. (ed.) Topics in Cryptology- CT-RSA 2003. Lecture Notes in Computer Science, vol. 2612, pp. 122–140. Springer, Berlin (2003). https://doi.org/10.1007/3-540-36563-x_9

    Chapter  Google Scholar 

  35. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography. Lecture Notes in Computer Science(), vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    Chapter  Google Scholar 

  36. Howe, J., Prest, T., Ricosset, T., Rossi, M.: Isochronous gaussian sampling: from inception to implementation. In: Ding, J., Tillich, J.P. (eds.) Post-Quantum Cryptography. Lecture Notes in Computer Science(), vol. 12100, pp. 53–71. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_4

    Chapter  Google Scholar 

  37. Hu, Y., Jia, H.: A new gaussian sampling for trapdoor lattices with arbitrary modulus. Des. Codes Cryptogr. 87, 2553–2570 (2019)

    Article  MathSciNet  Google Scholar 

  38. Jia, H., Hu, Y., Tang, C.: Lattice-based hash-and-sign signatures using approximate trapdoor, revisited. IET Inf. Secur. 16(1), 41–50 (2022)

    Article  Google Scholar 

  39. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsulation mechanism in the quantum random oracle model, revisited. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018. Lecture Notes in Computer Science(), vol. 10993, pp. 96–125. Springer, Cham. (2018). https://doi.org/10.1007/978-3-319-96878-0_4

    Chapter  Google Scholar 

  40. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) Advances in Cryptology - ASIACRYPT 2013. Lecture Notes in Computer Science, vol. 8269, pp. 1–20. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-42033-7_1

    Chapter  Google Scholar 

  41. Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more compact IBEs from ideal lattices and bilinear maps. In: Cheon, J., Takagi, T. (eds.) Advances in Cryptology - ASIACRYPT 2016. Lecture Notes in Computer Science(), vol. 10032, pp. 682–712. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-53890-6_23

    Chapter  Google Scholar 

  42. Laarhoven, T.: Search problems in cryptography. PhD thesis, PhD thesis, Eindhoven University of Technology, 2016 (2016)

    Google Scholar 

  43. Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 318–335. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29011-4_20

    Chapter  Google Scholar 

  44. Lu, X., et al.: LAC: practical Ring-LWE based public-key encryption with byte-level modulus. Cryptology ePrint Archive, Paper 2018/1009 (2018)

    Google Scholar 

  45. Lyubashevsky, V., et al.: Dilithium: submission to the NIST’s post-quantum cryptography standardization process (2022)

    Google Scholar 

  46. McCarthy, S., Smyth, N., O’Sullivan, E.: A practical implementation of identity-based encryption over NTRU lattices. In: O’Neill, M. (ed.) Cryptography and Coding. Lecture Notes in Computer Science(), vol. 10655, pp. 227–246. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7_12

    Chapter  Google Scholar 

  47. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 700–718. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  48. DMicciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput., 372–381 (2004)

    Google Scholar 

  49. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology - EUROCRYPT 2016. Lecture Notes in Computer Science(), vol. 9665, pp. 820–849. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49890-3_31

    Chapter  Google Scholar 

  50. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. In: Vaudenay, S. (ed.) Advances in Cryptology - EUROCRYPT 2006. Lecture Notes in Computer Science, vol. 4004, pp. 271–288. Springer, Berlin (2006). https://doi.org/10.1007/11761679_17

    Chapter  Google Scholar 

  51. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T. (ed.) Advances in Cryptology - CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223, pp. 80–97. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-14623-7_5

    Chapter  Google Scholar 

  52. Prest, T.: Gaussian sampling in lattice-based cryptography. PhD thesis, PhD thesis, École Normale Supérieure Paris (2015)

    Google Scholar 

  53. Prest, T., et al.: Falcon: submission to the NIST’s post-quantum cryptography standardization process (2022)

    Google Scholar 

  54. Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)

    Article  MathSciNet  Google Scholar 

  55. Schwabe, P., et al.: Kyber: submission to the NIST’s post-quantum cryptography standardization process (2020)

    Google Scholar 

  56. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology. Lecture Notes in Computer Science, vol. 196, pp. 47–53. Springer, Berlin (1984). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  57. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  Google Scholar 

  58. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677, pp. 619–636. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-03356-8_36

    Chapter  Google Scholar 

  59. Yamada, S.: Adaptively secure identity-based encryption from lattices with asymptotically shorter public parameters. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology - EUROCRYPT 2016. Lecture Notes in Computer Science(), vol. 9666, pp. 32–62. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49896-5_2

    Chapter  Google Scholar 

  60. Yang, Yu., Ducas, L.: Learning strikes again: the case of the DRS signature scheme. In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology - ASIACRYPT 2018. Lecture Notes in Computer Science(), vol. 11273, pp. 525–543. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_18

    Chapter  Google Scholar 

  61. Yu, Y., Jia, H., Wang, X.: Compact lattice gadget and its applications to hash-and-sign signatures. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology - CRYPTO 2023. Lecture Notes in Computer Science, vol. 14085, pp. 390–420. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38554-4_13

    Chapter  Google Scholar 

  62. Zhang, S., Yang, Yu.: Towards a simpler lattice gadget toolkit. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC 2022. Lecture Notes in Computer Science(), vol. 13177, pp. 498–520. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97121-2_18

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for helpful comments and suggestions. This work is supported by the National Key Research and Development Program of China (Grant No. 2021YFB3100200), the National Natural Science Foundation of China (Grant No. 12171114), the Guangzhou Science and Technology Plan Project (Grant No. 2024A04J3272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, H., Hu, Y., Tang, C., Wang, L. (2024). Towards Compact Identity-Based Encryption on Ideal Lattices. In: Oswald, E. (eds) Topics in Cryptology – CT-RSA 2024. CT-RSA 2024. Lecture Notes in Computer Science, vol 14643. Springer, Cham. https://doi.org/10.1007/978-3-031-58868-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-58868-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-58867-9

  • Online ISBN: 978-3-031-58868-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics