Abstract
Basic encryption and signature on lattices have comparable efficiency to their classical counterparts in terms of speed and key size. However, Identity-based Encryption (IBE) on lattices is much less efficient in terms of compactness, even when instantiated on ideal lattices and in the Random Oracle Model (ROM). This is because the underlying preimage sampling algorithm used to extract the users’ secret keys requires huge public parameters. In this work, we specify a compact IBE instantiation for practical use by introducing various optimizations. Specifically, we first propose a modified gadget that offers a tradeoff between security and compactness, making it more suitable for the instantiation of practical IBEs. Then, by incorporating our gadget and the non-spherical Gaussian technique, we provide an efficient preimage sampling algorithm, based on which, we give a specification of a compact IBE on ideal lattice. Finally, two parameter sets and a proof-of-concept implementation are presented. Given the importance of the preimage sampling algorithm in lattice-based cryptography, we believe that our technique can also be applied to the practical instantiation of other advanced cryptographic schemes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) Advances in Cryptology - EUROCRYPT 2010. Lecture Notes in Computer Science, vol. 6110, pp. 553–572. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-13190-5_28
Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) Advances in Cryptology - CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223, pp. 98–115. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-14623-7_6
Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108 (1996)
Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a new hope. In: USENIX Security 2016, pp. 327–343 (2016)
Apon, D., Fan, X., Liu, F.H.: Compact identity based encryption from LWE. Cryptology ePrint Archive, Report 2016/125 (2016)
Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: SODA 2016, pp. 10–24 (2016)
Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selective opening attack. In: Ishai, Y. (ed.) Theory of Cryptography. Lecture Notes in Computer Science, vol. 6597, pp. 235–252. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-19571-6_15
Bert, P., Eberhart, G., Prabel, L., Roux-Langlois, A., Sabt, M.: Implementation of lattice trapdoors on modules and applications. In: Cheon, J.H., Tillich, J.P. (eds.) Post-Quantum Cryptography. Lecture Notes in Computer Science(), vol. 12841, pp. 195–214. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81293-5_11
Bert, P., Fouque, P.A., Roux-Langlois, A., Sabt, M.: Practical implementation of Ring-SIS/LWE based signature and IBE. In: Lange, T., Steinwandt, R. (eds.) Post-Quantum Cryptography. Lecture Notes in Computer Science(), vol. 10786, pp. 271–291. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_13
Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revocation. In: ACM CCS 2008, pp. 417–426 (2008)
Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) Advances in Cryptology - CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, pp. 213–229. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44647-8_13
Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage resilience and circular security from new assumptions. In: Nielsen, J., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018. Lecture Notes in Computer Science(), vol. 10820, pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_20
Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions under entropic ring LWE. In: ITCS 2016, pp. 147–156 (2016)
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) Advances in Cryptology - EUROCRYPT 2010. Lecture Notes in Computer Science, vol. 6110, pp. 523–552. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-13190-5_27
Chen, Y., Genise, N., Mukherjee, P.: Approximate trapdoors for lattices and smaller hash-and-sign signatures. In: Galbraith, S., Moriai, S. (eds.) Advances in Cryptology - ASIACRYPT 2019. Lecture Notes in Computer Science(), vol. 11923, pp. 3–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_1
Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) Advances in Cryptology - ASIACRYPT 2011. Lecture Notes in Computer Science, vol. 7073, pp. 1–20. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-25385-0_1
Chung, C.M.M., et al.: NTT multiplication for NTT-unfriendly rings: new speed records for saber and NTRU on Cortex-M4 and AVX2. IACR Trans. CHES 2021 (2), 159–188 (2021)
Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding. Lecture Notes in Computer Science, vol. 2260, pp. 360–363. Springer, Berlin (2001). https://doi.org/10.1007/3-540-45325-3_32
Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology - CRYPTO 2017. Lecture Notes in Computer Science(), vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_18
Ducas, L., Galbraith, S., Prest, T., Yu, Y.: Integral matrix gram root and lattice gaussian sampling without floats. In: Canteaut, A., Ishai, Y. (eds.) Advances in Cryptology - EUROCRYPT 2020. Lecture Notes in Computer Science(), vol. 12106, pp. 608–637. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_21
Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT 2014. Lecture Notes in Computer Science, vol. 8874, pp. 22–41. Springer, Berlin (2014). https://doi.org/10.1007/978-3-662-45608-8_2
Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) Advances in Cryptology - ASIACRYPT 2012. Lecture Notes in Computer Science, vol. 7658, pp. 433–450. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-34961-4_27
Ducas, L., Prest, T.: Fast fourier orthogonalization. In: ISSAC 2016, pp. 191–198 (2016)
Espitau, T., et al.: MITAKA: a simpler, parallelizable, maskable variant of FALCON. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology - EUROCRYPT 2022. Lecture Notes in Computer Science, vol. 13277, pp. 222–253. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2_9
Espitau, T., Tibouchi, M., Wallet, A., Yang, Yu.: Shorter hash-and-sign lattice-based signatures. In: Dodis, Y., Shrimpton, T. (eds.) Advances in Cryptology - CRYPTO 2022. Lecture Notes in Computer Science, vol. 13508, pp. 245–275. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_9
Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) Public Key Cryptography - PKC 2012. Lecture Notes in Computer Science, vol. 7293, pp. 467–484. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-30057-8_28
Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum cost. In: Public Key Cryptography. Lecture Notes in Computer Science, vol. 1560, pp. 53–68. Springer, Berlin (1999). https://doi.org/10.1007/3-540-49162-7_5
Genise, N., Micciancio, D.: Faster gaussian sampling for trapdoor lattices with arbitrary modulus. In: Nielsen, J., Rijmen, V. (eds.) Advances in Cryptology - EUROCRYPT 2018. Lecture Notes in Computer Science(), vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_7
Genise, N., Micciancio, D., Peikert, C., Walter, M.: Improved discrete gaussian and subgaussian analysis for lattice cryptography. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) Public-Key Cryptography - PKC 2020. Lecture Notes in Computer Science(), vol. 12110, pp. 623–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_21
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)
Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski, B.S. (ed.) Advances in Cryptology - CRYPTO 1997. Lecture Notes in Computer Science, vol. 1294, pp. 112–131. Springer, Berlin (1997). https://doi.org/10.1007/BFb0052231
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC 2013, pp. 545–554 (2013)
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology - CRYPTO 2015. Lecture Notes in Computer Science(), vol. 9216, pp. 503–523. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-48000-7_25
Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSIGN: digital signatures using the NTRU lattice. In: Joye, M. (ed.) Topics in Cryptology- CT-RSA 2003. Lecture Notes in Computer Science, vol. 2612, pp. 122–140. Springer, Berlin (2003). https://doi.org/10.1007/3-540-36563-x_9
Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography. Lecture Notes in Computer Science(), vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12
Howe, J., Prest, T., Ricosset, T., Rossi, M.: Isochronous gaussian sampling: from inception to implementation. In: Ding, J., Tillich, J.P. (eds.) Post-Quantum Cryptography. Lecture Notes in Computer Science(), vol. 12100, pp. 53–71. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_4
Hu, Y., Jia, H.: A new gaussian sampling for trapdoor lattices with arbitrary modulus. Des. Codes Cryptogr. 87, 2553–2570 (2019)
Jia, H., Hu, Y., Tang, C.: Lattice-based hash-and-sign signatures using approximate trapdoor, revisited. IET Inf. Secur. 16(1), 41–50 (2022)
Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsulation mechanism in the quantum random oracle model, revisited. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology - CRYPTO 2018. Lecture Notes in Computer Science(), vol. 10993, pp. 96–125. Springer, Cham. (2018). https://doi.org/10.1007/978-3-319-96878-0_4
Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) Advances in Cryptology - ASIACRYPT 2013. Lecture Notes in Computer Science, vol. 8269, pp. 1–20. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-42033-7_1
Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more compact IBEs from ideal lattices and bilinear maps. In: Cheon, J., Takagi, T. (eds.) Advances in Cryptology - ASIACRYPT 2016. Lecture Notes in Computer Science(), vol. 10032, pp. 682–712. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-53890-6_23
Laarhoven, T.: Search problems in cryptography. PhD thesis, PhD thesis, Eindhoven University of Technology, 2016 (2016)
Lewko, A.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 318–335. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29011-4_20
Lu, X., et al.: LAC: practical Ring-LWE based public-key encryption with byte-level modulus. Cryptology ePrint Archive, Paper 2018/1009 (2018)
Lyubashevsky, V., et al.: Dilithium: submission to the NIST’s post-quantum cryptography standardization process (2022)
McCarthy, S., Smyth, N., O’Sullivan, E.: A practical implementation of identity-based encryption over NTRU lattices. In: O’Neill, M. (ed.) Cryptography and Coding. Lecture Notes in Computer Science(), vol. 10655, pp. 227–246. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7_12
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012. Lecture Notes in Computer Science, vol. 7237, pp. 700–718. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29011-4_41
DMicciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput., 372–381 (2004)
Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology - EUROCRYPT 2016. Lecture Notes in Computer Science(), vol. 9665, pp. 820–849. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49890-3_31
Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. In: Vaudenay, S. (ed.) Advances in Cryptology - EUROCRYPT 2006. Lecture Notes in Computer Science, vol. 4004, pp. 271–288. Springer, Berlin (2006). https://doi.org/10.1007/11761679_17
Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T. (ed.) Advances in Cryptology - CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223, pp. 80–97. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-14623-7_5
Prest, T.: Gaussian sampling in lattice-based cryptography. PhD thesis, PhD thesis, École Normale Supérieure Paris (2015)
Prest, T., et al.: Falcon: submission to the NIST’s post-quantum cryptography standardization process (2022)
Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Program. 66, 181–199 (1994)
Schwabe, P., et al.: Kyber: submission to the NIST’s post-quantum cryptography standardization process (2020)
Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology. Lecture Notes in Computer Science, vol. 196, pp. 47–53. Springer, Berlin (1984). https://doi.org/10.1007/3-540-39568-7_5
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)
Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677, pp. 619–636. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-03356-8_36
Yamada, S.: Adaptively secure identity-based encryption from lattices with asymptotically shorter public parameters. In: Fischlin, M., Coron, J.S. (eds.) Advances in Cryptology - EUROCRYPT 2016. Lecture Notes in Computer Science(), vol. 9666, pp. 32–62. Springer, Berlin (2016). https://doi.org/10.1007/978-3-662-49896-5_2
Yang, Yu., Ducas, L.: Learning strikes again: the case of the DRS signature scheme. In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology - ASIACRYPT 2018. Lecture Notes in Computer Science(), vol. 11273, pp. 525–543. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_18
Yu, Y., Jia, H., Wang, X.: Compact lattice gadget and its applications to hash-and-sign signatures. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology - CRYPTO 2023. Lecture Notes in Computer Science, vol. 14085, pp. 390–420. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38554-4_13
Zhang, S., Yang, Yu.: Towards a simpler lattice gadget toolkit. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC 2022. Lecture Notes in Computer Science(), vol. 13177, pp. 498–520. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97121-2_18
Acknowledgements
We would like to thank the anonymous reviewers for helpful comments and suggestions. This work is supported by the National Key Research and Development Program of China (Grant No. 2021YFB3100200), the National Natural Science Foundation of China (Grant No. 12171114), the Guangzhou Science and Technology Plan Project (Grant No. 2024A04J3272).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jia, H., Hu, Y., Tang, C., Wang, L. (2024). Towards Compact Identity-Based Encryption on Ideal Lattices. In: Oswald, E. (eds) Topics in Cryptology – CT-RSA 2024. CT-RSA 2024. Lecture Notes in Computer Science, vol 14643. Springer, Cham. https://doi.org/10.1007/978-3-031-58868-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-58868-6_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58867-9
Online ISBN: 978-3-031-58868-6
eBook Packages: Computer ScienceComputer Science (R0)