Abstract
Ephemeral Diffie-Hellman Over COSE (EDHOC) is designed to be a compact and lightweight authenticated key exchange protocol, providing mutual authentication, forward secrecy, and identity protection. EDHOC aims at being suitable for low-power networks such as cellular IoT, 6TiSCH, and LoRaWAN. In this paper, we perform a security analysis of the last draft of EDHOC (draft \(23\)). We analyse the full protocol including its four different authentication methods. Our results show that the security of the authenticated key exchange in EDHOC depends essentially on that of the authenticated encryption algorithm used during that phase. Finally, we provide more precise estimates of the computational security bounds for all authentication methods in EDHOC so that meaningful choices of quantitative parameters can be done to instantiate the protocol securely.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Informally, the “consistency” (defined by Krawczyk in [24]) guarantees a binding between a session key and the two parties involved in the protocol run. In the security model we use, the \(\textsf{Sound}\) predicate guarantees (when true) this property.
References
Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41
Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21
Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25
Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp. 30–45. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024447
Bruni, A., Sahl Jørgensen, T., Grønbech Petersen, T., Schürmann, C.: Formal verification of ephemeral diffie-hellman over cose (edhoc). In: Cremers, C., Lehmann, A. (eds.) Security Standardisation Research, pp. 21–36 (2018)
Cheval, V., Jacomme, C., Kremer, S., Künnemann, R.: SAPIC+: protocol verifiers of the world, unite! In: Butler, K.R.B., Thomas, K. (eds.) USENIX Security 2022, pp. 3935–3952. USENIX Association (2022)
Connectivity Standards Alliance: Zigbee specification
Cottier, B., Pointcheval, D.: Security analysis of the EDHOC protocol (2022). https://doi.org/10.48550/arXiv.2209.03599
Davis, H., Günther, F.: Tighter proofs for the SIGMA and TLS 1.3 key exchange protocols. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12727, pp. 448–479. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78375-4_18
Degabriele, J.P., Govinden, J., Günther, F., Paterson, K.G.: The security of ChaCha20-Poly1305 in the multi-user setting. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 1981–2003. ACM Press (2021)
Diemert, D., Jager, T.: On the tight security of TLS 1.3: theoretically sound cryptographic parameters for real-world deployments. J. Cryptol. 34(3), 30 (2021)
Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976). https://doi.org/10.1109/TIT.1976.1055638
Ferreira, L.: Computational security analysis of the full EDHOC protocol. Cryptology ePrint Archive (2024)
Fischlin, M., Günther, F.: Multi-stage key exchange and the case of Google’s QUIC protocol. In: Ahn, G.J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 1193–1204. ACM Press (2014)
Günther, F., Mukendi, M.I.T.: Careful with MAc-then-SIGn: a computational analysis of the EDHOC lightweight authenticated key exchange protocol. Cryptology ePrint Archive, Report 2022/1705 (2022)
Günther, F., Mukendi, M.I.T.: Careful with MAc-then-SIGn: A computational analysis of the EDHOC lightweight authenticated key exchange protocol. In: 8th IEEE European Symposium on Security and Privacy, EuroS &P 2023 (2023)
Hermans, J., Pashalidis, A., Vercauteren, F., Preneel, B.: A new RFID privacy model. In: Atluri, V., Díaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 568–587. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23822-2_31
Hoang, V.T., Tessaro, S., Thiruvengadam, A.: The multi-user security of GCM, revisited: tight bounds for nonce randomization. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1429–1440. ACM Press (2018)
IETF: IPv6 over the TSCH mode of IEEE 802.15.4e (6tisch) (2021)
Jacomme, C., Kremer, S., Künnemann, R.: A comprehensive, formal and automated analysis of the EDHOC protocol. In: 32nd USENIX Security Symposium (USENIX Security 23) (2023)
Jonsson, J.: On the security of CTR + CBC-MAC. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 76–93. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7_7
Kim, J., et al.: Scrutinizing the vulnerability of ephemeral Diffie-Hellman over COSE (EDHOC) for IoT environment using formal approaches. Mob. Inf. Syst. 2021, 1–18 (2021)
Krawczyk, H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation Function (HKDF) (2010). RFC 5869
Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_24
Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_34
Norrman, K., Sundararajan, V., Bruni, A.: Formal analysis of EDHOC key establishment for constrained IoT devices. In: di Vimercati, S.D.C., Samarati, P. (eds.) Proceedings of the 18th International Conference on Security and Cryptography, SECRYPT 2021, pp. 210–221. SCITEPRESS (2021)
Ouafi, K., Phan, R.C.W.: Traceable privacy of recent provably-secure RFID protocols. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 479–489. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_29
Rescorla, E., Barnes, R., Tschofenig, H.: Compact TLS 1.3 (2023)
Rescorla, E., Tschofenig, H., Modadugu, N.: The Datagram Transport Layer Security (DTLS) Protocol Version 1.3 (2022)
Schäge, S., Schwenk, J., Lauer, S.: Privacy-preserving authenticated key exchange and the case of IKEv2. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 567–596. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45388-6_20
Selander, G., Mattsson, J., Palombini, F., Seitz, L.: Object Security for Constrained RESTful Environments (OSCORE) (2019). RFC 8613
Selander, G., Preuß Mattsson, J., Palombini, F.: Ephemeral Diffie-Hellman Over COSE (EDHOC) – draft-ietf-lake-edhoc-23 (2024)
Selander, G., Preuß Mattsson, J., Serafin, L., Tiloca, M., Vučinić, M.: Traces of EDHOC (2023)
Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004)
Sigfox: Sigfox connected objects: Radio specifications (2023). rev. 1.7
Sornin, N.: LoRaWAN 1.1 Specification (2017). LoRa Alliance, version 1.1
Sornin, N., Luis, M., Eirich, T., Kramp, T.: LoRaWAN Specification (2016). LoRa Alliance, version 1.0
Transforma Insights: IoT connections in 2030: 4 billion LPWA, 468 million 5G (non-mMTC), and 4% of cellular using private networks (2021)
Transforma Insights: Global IoT connections to hit 29.4 billion in 2030 (2022)
Vucinic, M., Selander, G., Mattsson, J.P., Watteyne, T.: Lightweight authenticated key exchange with EDHOC. Computer 55(4), 94–100 (2022)
Acknowledgements
The author thanks the reviewers for their valuable remarks. This work was partly supported by the French ANR MobiS5 project (ANR18-CE-39-0019-02).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ferreira, L. (2024). Computational Security Analysis of the Full EDHOC Protocol. In: Oswald, E. (eds) Topics in Cryptology – CT-RSA 2024. CT-RSA 2024. Lecture Notes in Computer Science, vol 14643. Springer, Cham. https://doi.org/10.1007/978-3-031-58868-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-58868-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-58867-9
Online ISBN: 978-3-031-58868-6
eBook Packages: Computer ScienceComputer Science (R0)