Skip to main content

The Twinning Technique of the SyncLMKD Method

  • Conference paper
  • First Online:
Robotics, Computer Vision and Intelligent Systems (ROBOVIS 2024)

Abstract

This article introduces a novel technique for establishing a Digital Twin counterpart twinning methodology, aiming to attain elevated fidelity levels for mobile robots. The proposed technique, denominated as Synchronization Logarithmic Mean Kinematic Difference (SyncLMKD), is elucidated in detail within the confines of this study. Addressing the diverse fidelity requirements intrinsic to Industry 4.0’s dynamic landscape necessitates a sophisticated numerical method. The SyncLMKD technique, being numerical, facilitates the dynamic and decoupled adjustment of compensations about trajectory planning. Consequently, this numerical methodology empowers the definition of various degrees of freedom when configuring environmental layouts. Moreover, this technique incorporates considerations such as the predictability of distances between counterparts and path planning. The article also comprehensively explores tuning control, insights, metrics, and control strategies associated with the SyncLMKD approach. Experimental validations of the proposed methodology were conducted on a virtual platform designed to support the SyncLMKD technique, affirming its efficacy in achieving the desired level of high fidelity for mobile robots across diverse operational scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Simulation dataset - https://github.com/facardoso-sudo/2024.

References

  1. Brunete, A., Ranganath, A., Segovia, S., De Frutos, J.P., Hernando, M., Gambao, E.: Current trends in reconfigurable modular robots design. Int. J. Adv. Robot. Syst. 14(3), 1729881417710457 (2017)

    Google Scholar 

  2. Cardoso, F.S., Cantieri, A.R., de Oliveira, A.S.: Controle Cinemático de Sincronização para as Contrapartes do Gêmeo Digital Através do Novo Método SyncLMKD. Simpósio Brasileiro de Automação Inteligente - SBAI (2023)

    Google Scholar 

  3. Chen, T., Yin, X., Peng, L., Rong, J., Yang, J., Cong, G.: Monitoring and recognizing enterprise public opinion from high-risk users based on user portrait and random forest algorithm. Axioms 10(2), 106 (2021)

    Article  Google Scholar 

  4. Emara, M.B., Youssef, A.W., Mashaly, M., Kiefer, J., Shihata, L.A., Azab, E.: Digital twinning for closed-loop control of a three-wheeled omnidirectional mobile robot. Procedia CIRP 107, 1245–1250 (2022)

    Article  Google Scholar 

  5. Gardner, L., Kyvelou, P., Herbert, G., Buchanan, C.: Testing and initial verification of the world’s first metal 3D printed bridge. J. Constr. Steel Res. 172, 106233 (2020)

    Article  Google Scholar 

  6. Kuts, V., Cherezova, N., Sarkans, M., Otto, T.: Digital twin: industrial robot kinematic model integration to the virtual reality environment. J. Mach. Eng. 20(2), 53–64 (2020)

    Article  Google Scholar 

  7. Liang, C.J., McGee, W., Menassa, C., Kamat, V.: Bi-directional communication bridge for state synchronization between digital twin simulations and physical construction robots. In: Proceedings of the International Symposium on Automation and Robotics in Construction (IAARC) (2020)

    Google Scholar 

  8. Liu, X., et al.: Genetic algorithm-based trajectory optimization for digital twin robots. Front. Bioeng. Biotechnol. 9, 793782 (2022)

    Article  Google Scholar 

  9. Luo, R.C., Hsu, W.L.: Autonomous mobile robot localization based on multisensor fusion approach. In: 2012 IEEE International Symposium on Industrial Electronics, pp. 1262–1267. IEEE (2012)

    Google Scholar 

  10. Müller, M.S., Jazdi, N., Weyrich, M.: Self-improving models for the intelligent digital twin: towards closing the reality-to-simulation gap. IFAC-PapersOnLine 55(2), 126–131 (2022)

    Article  Google Scholar 

  11. Qi, Q., et al.: Enabling technologies and tools for digital twin. J. Manuf. Syst. 58, 3–21 (2021)

    Article  Google Scholar 

  12. Schleich, B., Anwer, N., Mathieu, L., Wartzack, S.: Shaping the digital twin for design and production engineering. CIRP Ann. 66(1), 141–144 (2017)

    Article  Google Scholar 

  13. Xuan, D.T., Huynh, T.V., Hung, N.T., Thang, V.T.: Applying digital twin and multi-adaptive genetic algorithms in human-robot cooperative assembly optimization. Appl. Sci. 13(7), 4229 (2023)

    Article  Google Scholar 

  14. Yildiz, E., Møller, C., Bilberg, A.: Demonstration and evaluation of a digital twin-based virtual factory. Int. J. Adv. Manuf. Technol. 114(1), 185–203 (2021)

    Article  Google Scholar 

  15. Yu, M., Li, G., Jiang, D., Jiang, G., Tao, B., Chen, D.: Hand medical monitoring system based on machine learning and optimal EMG feature set. Pers. Ubiquit. Comput. 1–17 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Schneider de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cardoso, F.S., Rohrich, R.F., de Oliveira, A.S. (2024). The Twinning Technique of the SyncLMKD Method. In: Filipe, J., Röning, J. (eds) Robotics, Computer Vision and Intelligent Systems. ROBOVIS 2024. Communications in Computer and Information Science, vol 2077. Springer, Cham. https://doi.org/10.1007/978-3-031-59057-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59057-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59056-6

  • Online ISBN: 978-3-031-59057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics