Abstract
One of the main problems for face recognition when comparing photos of various ages is the impact of age progression on facial features. The face undergoes many changes as a person grows older, including geometrical changes and changes in facial hair, etc. Even though biometric markers such as computed face feature vectors should preferably be invariant to such factors, face recognition generally becomes less reliable as the age span grows larger. Therefore, this study was conducted with the aim of exploring the efficiency of such feature vectors in recognising individuals despite variations in age, and how to measure face recognition performance and behaviour in the data. It is shown that they are indeed discriminative enough to achieve age-invariant face recognition without synthesising age images through generative processes or training on specialised age related features.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beitzel, S.M., Jensen, E.C., Frieder, O.: Map. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1691–1692. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9_492
Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc. 35, 99–110 (1943)
Boutros, F., Damer, N., Kirchbuchner, F., Kuijper, A.: ElasticFace: elastic margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1578–1587 (2022)
Deb, D., Aggarwal, D., Jain, A.K.: Identifying missing children: face age-progression via deep feature aging. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 10540–10547 (2021). https://doi.org/10.1109/ICPR48806.2021.9411913
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)
Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I., Zafeiriou, S.: RetinaFace: single-stage dense face localisation in the wild (2019). https://doi.org/10.48550/ARXIV.1905.00641
Duong, C., Quach, K., Luu, K., Le, T., Savvides, M.: Temporal non-volume preserving approach to facial age-progression and age-invariant face recognition. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3755–3763. IEEE Computer Society, Los Alamitos, CA, USA (2017). https://doi.org/10.1109/ICCV.2017.403
Geng, X., Zhou, Z., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2234–2240 (2007). https://doi.org/10.1109/TPAMI.2007.70733
Gong, D., Li, Z., Lin, D., Liu, J., Tang, X.: Hidden factor analysis for age invariant face recognition. In: 2013 IEEE International Conference on Computer Vision, pp. 2872–2879 (2013). https://doi.org/10.1109/ICCV.2013.357
Gong, D., Li, Z., Tao, D., Liu, J., Li, X.: A maximum entropy feature descriptor for age invariant face recognition. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5289–5297 (2015). https://doi.org/10.1109/CVPR.2015.7299166
Hast, A.: Age-invariant face recognition using face feature vectors and embedded prototype subspace classifiers. In: Blanc-Talon, J., Delmas, P., Philips, W., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems, pp. 88–99. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-45382-3_8
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst (2007)
Huang, Z., Zhang, J., Shan, H.: When age-invariant face recognition meets face age synthesis: a multi-task learning framework. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7282–7291 (2021)
Huang, Z., Zhang, J., Shan, H.: When age-invariant face recognition meets face age synthesis: a multi-task learning framework and a new benchmark. IEEE Trans. Pattern Anal. Mach. Intell. (2022)
InsightFace: Insightface (2023). https://insightface.ai. Accessed 30 Feb 2023
Kim, M., Jain, A.K., Liu, X.: AdaFace: quality adaptive margin for face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)
Lanitis, A., Taylor, C., Cootes, T.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 442–455 (2002). https://doi.org/10.1109/34.993553
Learned-Miller, G.B.H.E.: Labeled faces in the wild: updates and new reporting procedures. Technical Report UM-CS-2014-003, University of Massachusetts, Amherst (2014)
Li, Z., Gong, D., Li, X., Tao, D.: Aging face recognition: a hierarchical learning model based on local patterns selection. IEEE Trans. Image Process. 25(5), 2146–2154 (2016). https://doi.org/10.1109/TIP.2016.2535284
Li, Z., Park, U., Jain, A.K.: A discriminative model for age invariant face recognition. IEEE Trans. Inf. Forensics Secur. 6(3), 1028–1037 (2011). https://doi.org/10.1109/TIFS.2011.2156787
Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.W.: A study of face recognition as people age. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007). https://doi.org/10.1109/ICCV.2007.4409069
Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.W.: Face verification across age progression using discriminative methods. IEEE Trans. Inf. Forensics Secur. 5(1), 82–91 (2010). https://doi.org/10.1109/TIFS.2009.2038751
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6738–6746. IEEE Computer Society, Los Alamitos (2017). https://doi.org/10.1109/CVPR.2017.713
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)
Mahalingam, G., Kambhamettu, C.: Age invariant face recognition using graph matching. In: 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–7 (2010). https://doi.org/10.1109/BTAS.2010.5634496
Meng, Q., Zhao, S., Huang, Z., Zhou, F.: MagFace: a universal representation for face recognition and quality assessment. In: CVPR (2021)
Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1997–2005 (2017). https://doi.org/10.1109/CVPRW.2017.250
Park, U., Tong, Y., Jain, A.K.: Age-invariant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 947–954 (2010). https://doi.org/10.1109/TPAMI.2010.14
Ramanathan, N., Chellappa, R.: Modeling age progression in young faces. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 387–394 (2006). https://doi.org/10.1109/CVPR.2006.187
Sawant, M.M., Bhurchandi, K.M.: Age invariant face recognition: a survey on facial aging databases, techniques and effect of aging. Artif. Intell. Rev. 52, 981–1008 (2019). https://doi.org/10.1007/s10462-018-9661-z
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015). https://doi.org/10.1109/CVPR.2015.7298682
Serengil, S.I., Ozpinar, A.: LightFace: a hybrid deep face recognition framework. In: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 23–27. IEEE (2020). https://doi.org/10.1109/ASYU50717.2020.9259802
Serengil, S.I., Ozpinar, A.: Hyperextended lightface: a facial attribute analysis framework. In: 2021 International Conference on Engineering and Emerging Technologies (ICEET), pp. 1–4. IEEE (2021). https://doi.org/10.1109/ICEET53442.2021.9659697
Serengil, S.I., Ozpinar, A.: An evaluation of SQL and NoSQL databases for facial recognition pipelines (2023). https://www.cambridge.org/engage/coe/article-details/63f3e5541d2d184063d4f569, https://doi.org/10.33774/coe-2023-18rcn. preprint
Shah, M.H., Dang, X.: Novel feature selection method using Bhattacharyya distance for neural networks based automatic modulation classification. IEEE Signal Process. Lett. 27, 106–110 (2020). https://doi.org/10.1109/LSP.2019.2957924
Shi, Y., Jain, A.: Probabilistic face embeddings. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6901–6910 (2019). https://doi.org/10.1109/ICCV.2019.00700
Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018). https://doi.org/10.1109/CVPR.2018.00552
Wang, Y., et al.: Orthogonal deep features decomposition for age-invariant face recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision - ECCV 2018, pp. 764–779. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_45
Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision - ECCV 2016, pp. 499–515. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31
Xu, C., Liu, Q., Ye, M.: Age invariant face recognition and retrieval by coupled auto-encoder networks. Neurocomputing 222, 62–71 (2017)
Yan, C., et al.: Age-invariant face recognition by multi-feature fusion and decomposition with self-attention. ACM Trans. Multimedia Comput. Commun. Appl. 18(1s) (2022). https://doi.org/10.1145/3472810
Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch (2014). https://doi.org/10.48550/ARXIV.1411.7923
Zheng, T., Deng, W., Hu, J.: Age estimation guided convolutional neural network for age-invariant face recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 503–511 (2017). https://doi.org/10.1109/CVPRW.2017.77
Acknowledgements
This work has been partially supported by the Swedish Research Council (Dnr 2020-04652; Dnr 2022-02056) in the projects The City’s Faces. Visual culture and social structure in Stockholm 1880–1930 and The International Centre for Evidence-Based Criminal Law (EB-CRIME). The computations were performed on resources provided by SNIC through UPPMAX under projects SNIC 2021/22-918 and SNIC 2022/22-1123.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hast, A., Zhou, Y., Lai, C., Blohm, I. (2024). Analysis of Age Invariant Face Recognition Efficiency Using Face Feature Vectors. In: Filipe, J., Röning, J. (eds) Robotics, Computer Vision and Intelligent Systems. ROBOVIS 2024. Communications in Computer and Information Science, vol 2077. Springer, Cham. https://doi.org/10.1007/978-3-031-59057-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-59057-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-59056-6
Online ISBN: 978-3-031-59057-3
eBook Packages: Computer ScienceComputer Science (R0)