Skip to main content

Analysis of Age Invariant Face Recognition Efficiency Using Face Feature Vectors

  • Conference paper
  • First Online:
Robotics, Computer Vision and Intelligent Systems (ROBOVIS 2024)

Abstract

One of the main problems for face recognition when comparing photos of various ages is the impact of age progression on facial features. The face undergoes many changes as a person grows older, including geometrical changes and changes in facial hair, etc. Even though biometric markers such as computed face feature vectors should preferably be invariant to such factors, face recognition generally becomes less reliable as the age span grows larger. Therefore, this study was conducted with the aim of exploring the efficiency of such feature vectors in recognising individuals despite variations in age, and how to measure face recognition performance and behaviour in the data. It is shown that they are indeed discriminative enough to achieve age-invariant face recognition without synthesising age images through generative processes or training on specialised age related features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beitzel, S.M., Jensen, E.C., Frieder, O.: Map. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1691–1692. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-39940-9_492

  2. Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distribution. Bull. Calcutta Math. Soc. 35, 99–110 (1943)

    MathSciNet  Google Scholar 

  3. Boutros, F., Damer, N., Kirchbuchner, F., Kuijper, A.: ElasticFace: elastic margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1578–1587 (2022)

    Google Scholar 

  4. Deb, D., Aggarwal, D., Jain, A.K.: Identifying missing children: face age-progression via deep feature aging. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 10540–10547 (2021). https://doi.org/10.1109/ICPR48806.2021.9411913

  5. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  6. Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I., Zafeiriou, S.: RetinaFace: single-stage dense face localisation in the wild (2019). https://doi.org/10.48550/ARXIV.1905.00641

  7. Duong, C., Quach, K., Luu, K., Le, T., Savvides, M.: Temporal non-volume preserving approach to facial age-progression and age-invariant face recognition. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3755–3763. IEEE Computer Society, Los Alamitos, CA, USA (2017). https://doi.org/10.1109/ICCV.2017.403

  8. Geng, X., Zhou, Z., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2234–2240 (2007). https://doi.org/10.1109/TPAMI.2007.70733

    Article  Google Scholar 

  9. Gong, D., Li, Z., Lin, D., Liu, J., Tang, X.: Hidden factor analysis for age invariant face recognition. In: 2013 IEEE International Conference on Computer Vision, pp. 2872–2879 (2013). https://doi.org/10.1109/ICCV.2013.357

  10. Gong, D., Li, Z., Tao, D., Liu, J., Li, X.: A maximum entropy feature descriptor for age invariant face recognition. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5289–5297 (2015). https://doi.org/10.1109/CVPR.2015.7299166

  11. Hast, A.: Age-invariant face recognition using face feature vectors and embedded prototype subspace classifiers. In: Blanc-Talon, J., Delmas, P., Philips, W., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems, pp. 88–99. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-45382-3_8

    Chapter  Google Scholar 

  12. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst (2007)

    Google Scholar 

  13. Huang, Z., Zhang, J., Shan, H.: When age-invariant face recognition meets face age synthesis: a multi-task learning framework. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7282–7291 (2021)

    Google Scholar 

  14. Huang, Z., Zhang, J., Shan, H.: When age-invariant face recognition meets face age synthesis: a multi-task learning framework and a new benchmark. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  15. InsightFace: Insightface (2023). https://insightface.ai. Accessed 30 Feb 2023

  16. Kim, M., Jain, A.K., Liu, X.: AdaFace: quality adaptive margin for face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  17. Lanitis, A., Taylor, C., Cootes, T.: Toward automatic simulation of aging effects on face images. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 442–455 (2002). https://doi.org/10.1109/34.993553

    Article  Google Scholar 

  18. Learned-Miller, G.B.H.E.: Labeled faces in the wild: updates and new reporting procedures. Technical Report UM-CS-2014-003, University of Massachusetts, Amherst (2014)

    Google Scholar 

  19. Li, Z., Gong, D., Li, X., Tao, D.: Aging face recognition: a hierarchical learning model based on local patterns selection. IEEE Trans. Image Process. 25(5), 2146–2154 (2016). https://doi.org/10.1109/TIP.2016.2535284

    Article  MathSciNet  Google Scholar 

  20. Li, Z., Park, U., Jain, A.K.: A discriminative model for age invariant face recognition. IEEE Trans. Inf. Forensics Secur. 6(3), 1028–1037 (2011). https://doi.org/10.1109/TIFS.2011.2156787

    Article  Google Scholar 

  21. Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.W.: A study of face recognition as people age. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007). https://doi.org/10.1109/ICCV.2007.4409069

  22. Ling, H., Soatto, S., Ramanathan, N., Jacobs, D.W.: Face verification across age progression using discriminative methods. IEEE Trans. Inf. Forensics Secur. 5(1), 82–91 (2010). https://doi.org/10.1109/TIFS.2009.2038751

    Article  Google Scholar 

  23. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6738–6746. IEEE Computer Society, Los Alamitos (2017). https://doi.org/10.1109/CVPR.2017.713

  24. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  25. Mahalingam, G., Kambhamettu, C.: Age invariant face recognition using graph matching. In: 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–7 (2010). https://doi.org/10.1109/BTAS.2010.5634496

  26. Meng, Q., Zhao, S., Huang, Z., Zhou, F.: MagFace: a universal representation for face recognition and quality assessment. In: CVPR (2021)

    Google Scholar 

  27. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1997–2005 (2017). https://doi.org/10.1109/CVPRW.2017.250

  28. Park, U., Tong, Y., Jain, A.K.: Age-invariant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 947–954 (2010). https://doi.org/10.1109/TPAMI.2010.14

    Article  Google Scholar 

  29. Ramanathan, N., Chellappa, R.: Modeling age progression in young faces. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 387–394 (2006). https://doi.org/10.1109/CVPR.2006.187

  30. Sawant, M.M., Bhurchandi, K.M.: Age invariant face recognition: a survey on facial aging databases, techniques and effect of aging. Artif. Intell. Rev. 52, 981–1008 (2019). https://doi.org/10.1007/s10462-018-9661-z

    Article  Google Scholar 

  31. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815–823 (2015). https://doi.org/10.1109/CVPR.2015.7298682

  32. Serengil, S.I., Ozpinar, A.: LightFace: a hybrid deep face recognition framework. In: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 23–27. IEEE (2020). https://doi.org/10.1109/ASYU50717.2020.9259802

  33. Serengil, S.I., Ozpinar, A.: Hyperextended lightface: a facial attribute analysis framework. In: 2021 International Conference on Engineering and Emerging Technologies (ICEET), pp. 1–4. IEEE (2021). https://doi.org/10.1109/ICEET53442.2021.9659697

  34. Serengil, S.I., Ozpinar, A.: An evaluation of SQL and NoSQL databases for facial recognition pipelines (2023). https://www.cambridge.org/engage/coe/article-details/63f3e5541d2d184063d4f569, https://doi.org/10.33774/coe-2023-18rcn. preprint

  35. Shah, M.H., Dang, X.: Novel feature selection method using Bhattacharyya distance for neural networks based automatic modulation classification. IEEE Signal Process. Lett. 27, 106–110 (2020). https://doi.org/10.1109/LSP.2019.2957924

    Article  Google Scholar 

  36. Shi, Y., Jain, A.: Probabilistic face embeddings. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6901–6910 (2019). https://doi.org/10.1109/ICCV.2019.00700

  37. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018). https://doi.org/10.1109/CVPR.2018.00552

  38. Wang, Y., et al.: Orthogonal deep features decomposition for age-invariant face recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision - ECCV 2018, pp. 764–779. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_45

    Chapter  Google Scholar 

  39. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision - ECCV 2016, pp. 499–515. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  40. Xu, C., Liu, Q., Ye, M.: Age invariant face recognition and retrieval by coupled auto-encoder networks. Neurocomputing 222, 62–71 (2017)

    Article  Google Scholar 

  41. Yan, C., et al.: Age-invariant face recognition by multi-feature fusion and decomposition with self-attention. ACM Trans. Multimedia Comput. Commun. Appl. 18(1s) (2022). https://doi.org/10.1145/3472810

  42. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch (2014). https://doi.org/10.48550/ARXIV.1411.7923

  43. Zheng, T., Deng, W., Hu, J.: Age estimation guided convolutional neural network for age-invariant face recognition. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 503–511 (2017). https://doi.org/10.1109/CVPRW.2017.77

Download references

Acknowledgements

This work has been partially supported by the Swedish Research Council (Dnr 2020-04652; Dnr 2022-02056) in the projects The City’s Faces. Visual culture and social structure in Stockholm 1880–1930 and The International Centre for Evidence-Based Criminal Law (EB-CRIME). The computations were performed on resources provided by SNIC through UPPMAX under projects SNIC 2021/22-918 and SNIC 2022/22-1123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Hast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hast, A., Zhou, Y., Lai, C., Blohm, I. (2024). Analysis of Age Invariant Face Recognition Efficiency Using Face Feature Vectors. In: Filipe, J., Röning, J. (eds) Robotics, Computer Vision and Intelligent Systems. ROBOVIS 2024. Communications in Computer and Information Science, vol 2077. Springer, Cham. https://doi.org/10.1007/978-3-031-59057-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59057-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59056-6

  • Online ISBN: 978-3-031-59057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics