Skip to main content

Artificial Intelligence for Automated Marine Growth Segmentation

  • Conference paper
  • First Online:
Robot 2023: Sixth Iberian Robotics Conference (ROBOT 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 978))

Included in the following conference series:

  • 34 Accesses

Abstract

Marine growth impacts the stability and integrity of offshore structures, while simultaneously preventing inspection procedures. In consequence, companies need to employ specialists that manually assess each impacted part of the structure. Due to harsh sub-sea environments, acquiring large quantities of quality underwater data becomes difficult. To mitigate these challenges a new data augmentation algorithm is proposed that generates new images by performing localized crops on regions of interest from the original data, expanding the total size of the dataset approximately 6 times. This research also proposes a learning-based algorithm capable of automatically delineating marine growth in underwater images, achieving up to 0.389 IoU and 0.508 Dice Loss. Advances in this area contribute for reducing the manual labour necessary to schedule maintenance operations in man-made submerged structures, while increasing the reliability and automation of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adumene, S., Ikue-John, H.: Offshore system safety and operational challenges in harsh arctic operations. J. Safety Sci. Resilience 3(2), 153–168 (2022). https://doi.org/10.1016/j.jnlssr.2022.02.001

    Article  Google Scholar 

  2. Apolinario, M., Coutinho, R.: Understanding the biofouling of offshore and deep-sea structures. In: Hellio, C., Yebra, D. (eds.) Advances in Marine Antifouling Coatings and Technologies, pp. 132–147. Woodhead Publishing Series in Metals and Surface Engineering, Woodhead Publishing (2009). 10.1533/9781845696313.1.132

    Google Scholar 

  3. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017). https://doi.org/10.1109/TPAMI.2016.2644615

    Article  Google Scholar 

  4. Campos, D., Matos, A., Pinto, A.: Multi-domain inspection of offshore wind farms using an autonomous surface vehicle. SN Appli. Sci. 3 (2021). https://doi.org/10.1007/s42452-021-04451-5

  5. Chan, F., Lam, F., Zhu, H.: Adaptive thresholding by variational method. IEEE Trans. Image Process. 7(3), 468–473 (1998). https://doi.org/10.1109/83.661196

    Article  Google Scholar 

  6. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv (2017). https://doi.org/10.48550/arXiv.1706.05587

  7. Cheng, J., Xue, R., Lu, W., Jia, R.: Segmentation of medical images with canny operator and gvf snake model. In: 2008 7th World Congress on Intelligent Control and Automation. pp, 1777–1780 (2008). https://doi.org/10.1109/WCICA.2008.4593191

  8. Dionísio, J.M.M., Pereira, P.N.A.A.S., Leite, P.N., Neves, F.S., Tavares, J.M.R.S., Pinto, A.M.: Nereon - an underwater dataset for monocular depth estimation. In: OCEANS 2023 - Limerick. pp. 1–7 (2023). https://doi.org/10.1109/OCEANSLimerick52467.2023.10244675

  9. Drews-Jr, P., Nascimento, E., Botelho, S., Campos, M.: Underwater depth estimation and image restoration based on single images. IEEE Comput. Graph. Appli. 36, 24–35 (2016). https://doi.org/10.1109/MCG.2016.26

    Article  Google Scholar 

  10. Drews-Jr, P., Souza, I., Maurell, I., Protas, E., Botelho, S.: Underwater image segmentation in the wild using deep learning. J. Brazilian Comput. Soc. 27 (2021). https://doi.org/10.1186/s13173-021-00117-7

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv (2017). https://doi.org/10.48550/arXiv.1412.6980

  13. Leite, P.N., Pinto, A.M.: Exploiting motion perception in depth estimation through a lightweight convolutional neural network. IEEE Access 9, 76056–76068 (2021). https://doi.org/10.1109/ACCESS.2021.3082697

    Article  Google Scholar 

  14. Leite, P.N., Pinto, A.M.: Fusing heterogeneous tri-dimensional information for reconstructing submerged structures in harsh sub-sea environments. SSRN (2023). https://doi.org/10.2139/ssrn.4409685

    Article  Google Scholar 

  15. Leite, P.N., Silva, R.J., Campos, D.F., Pinto, A.M.: Dense disparity maps from RGB and sparse depth information using deep regression models. In: Campilho, A., Karray, F., Wang, Z. (eds.) ICIAR 2020. LNCS, vol. 12131, pp. 379–392. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50347-5_33

    Chapter  Google Scholar 

  16. Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2), 129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489

    Article  MathSciNet  Google Scholar 

  17. Mary Synthuja Jain Preetha, M., Padma Suresh, L., John Bosco, M.: Image segmentation using seeded region growing. In: 2012 International Conference on Computing, Electronics and Electrical Technologies (ICCEET), pp. 576–583 (2012). https://doi.org/10.1109/ICCEET.2012.6203897

  18. Pinto, A.M., et al.: Atlantis coastal testbed: a near-real playground for the testing and validation of robotics for o &m. In: OCEANS 2023 - Limerick, pp. 1–5 (2023). https://doi.org/10.1109/OCEANSLimerick52467.2023.10244595

  19. Pinto, A.M., et al.: Atlantis - the atlantic testing platform for maritime robotics. In: OCEANS 2021, San Diego - Porto, pp. 1–5 (2021). https://doi.org/10.23919/OCEANS44145.2021.9706059

  20. Pinto, A.M., Matos, A.C.: Maresye: a hybrid imaging system for underwater robotic applications. Inform. Fusion 55, 16–29 (2020). https://doi.org/10.1016/j.inffus.2019.07.014

    Article  Google Scholar 

  21. Pinto, A.M., Pinto, H., Matos, A.C.: A mosaicking approach for visual mapping of large-scale environments. In: 2016 International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 87–93 (2016). https://doi.org/10.1109/ICARSC.2016.18

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Silva, R., Matos, A., Pinto, A.M.: Multi-criteria metric to evaluate motion planners for underwater intervention. Auton, Robots 46, 971–983 (12 2022). https://doi.org/10.1007/s10514-022-10060-x

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv (2015). https://doi.org/10.48550/arXiv.1409.1556

  25. Skliris, N., Marsh, R., Srokosz, M., Aksenov, Y., Rynders, S., Fournier, N.: Assessing extreme environmental loads on offshore structures in the north sea from high-resolution ocean currents, waves and wind forecasting. J. Marine Sci. Eng. 9(10) (2021). https://doi.org/10.3390/jmse9101052

  26. Zhou, Y., Wang, J., Li, B., Meng, Q., Rocco, E., Saiani, A.: Underwater scene segmentation by deep neural network. In: UK-RAS19 Conference: “Embedded Intelligence: Enabling & Supporting RAS Technologies” Proceedings (2019). https://doi.org/10.31256/UKRAS19.12

Download references

Acknowledgments

This work is partly funded by the Portuguese Government through the Fundação para a Ciência e a Tecnologia (FCT) within P.hD. grant 2020.06949.BD (to PNL), and by the European Union’s Horizon 2020 - The EU Framework Programme for Research and Innovation 2014-2020, under grant agreement No. 871571 (ATLANTIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Carvalho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carvalho, J., Leite, P.N., Mina, J., Pinho, L., Gonçalves, E.P., Pinto, A.M. (2024). Artificial Intelligence for Automated Marine Growth Segmentation. In: Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M. (eds) Robot 2023: Sixth Iberian Robotics Conference. ROBOT 2023. Lecture Notes in Networks and Systems, vol 978. Springer, Cham. https://doi.org/10.1007/978-3-031-59167-9_13

Download citation

Publish with us

Policies and ethics