Skip to main content

Real-Time Torque Estimation Using Human and Sensor Data Fusion for Exoskeleton Assistance

  • Conference paper
  • First Online:
Robot 2023: Sixth Iberian Robotics Conference (ROBOT 2023)

Abstract

Robotic assistive devices have emerged as a potential complement for repetitive and user-centered gait rehabilitation. In this field, the development of electromyography (EMG)-based torque controls has played a crucial role in improving the user experience with robotic assistive devices. However, most existing approaches for EMG-based joint torque estimation (i) are designed for upper limbs; (ii) often do not consider the complexity of the walking motion, focusing only on the stance phase; and (iii) rely on complex mathematical models that result in time-consuming estimations. This study aims to address these shortcomings by evaluating the generalization ability of a Deep Learning regressor (Convolutional Neural Network (CNN)) for estimating ankle torque trajectories, in real-time. Several inputs were incorporated, namely, EMG signals from Tibialis Anterior and Gastrocnemius Lateralis, hip kinematic data in the sagittal plane (angle, angular velocity, angular acceleration), walking speed (from 1.5 to 2.0 km/h), user’s demographic (gender and age) and anthropometric information (height and mass, ranging from 1.50 to 1.90 m and 50.0 to 90.0 kg, respectively, and shank and foot lengths). Results showed that a CNN model with two convolutional layers showed the highest generalization ability (Root Mean Square Error: 23.4 ± 8.36, Normalized Mean Square Error: 0.494 ± 0.299, and Spearman Correlation 0.754 ± 0.105). CNN model’s time-effectiveness was tested in an active ankle orthosis, being able to estimate ankle joint torques in less than 2 ms. This study contributes to a more time-effective model for real-time EMG-based torque estimation, enabling a promising advancement in EMG-based torque control for lower limb robotic assistive devices.

This work was funded by the Fundação para a Ciência e Tecnologia under the scholarship reference 2020.05711.BD, under the Stimulus of Scientific Employment with the grant 2020.03393.CEECIND, with the FAIR project under grant 2022.05844.PTDC, under the national support to R&D units grant through the reference project UIDB/04436/2020 and UIDP/04436/2020, and under the scholarship reference POCI-01-0247-FEDER-039868_BI_04_2022_CMEMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng, W., Liu, Q., Zhou, Z., et al.: Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation. Mechatronics 31, 132–145 (2015). https://doi.org/10.1016/j.mechatronics.2015.04.005

    Article  Google Scholar 

  2. Zhang, J., Cheah, C.C., Collins, S.H.: Torque control in legged locomotion. In: Bioinspired Legged Locomotion, 1st edn., pp. 347–400. Elsevier (2017)

    Google Scholar 

  3. Baud, R., Manzoori, A.R., Ijspeert, A., Bouri, M.: Review of control strategies for lower-limb exoskeletons to assist gait. J. Neuroeng. Rehabil. 18, 119 (2021). https://doi.org/10.1186/s12984-021-00906-3

    Article  Google Scholar 

  4. Ao, D., Song, R., Gao, J.: Movement performance of human-robot cooperation control based on EMG-driven hill-type and proportional models for an ankle power-assist exoskeleton robot. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1125–1134 (2017). https://doi.org/10.1109/TNSRE.2016.2583464

    Article  Google Scholar 

  5. Sartori, M., Lloyd, D.G., Reggiani, M., Pagello, E.: A stiff tendon neuromusculoskeletal model of the knee. In: 2009 IEEE Workshop on Advanced Robotics and its Social Impacts, pp. 132–138. IEEE (2009)

    Google Scholar 

  6. Gui, K., Liu, H., Zhang, D.: A practical and adaptive method to achieve EMG-based torque estimation for a robotic exoskeleton. IEEE/ASME Trans. Mechatron. 24, 483–494 (2019). https://doi.org/10.1109/TMECH.2019.2893055

    Article  Google Scholar 

  7. Chandrapal, M., Chen, X., Wang, W., et al.: Investigating improvements to neural network based EMG to joint torque estimation. Paladyn. J. Behav. Robot. 2, 185–192 (2011). https://doi.org/10.2478/s13230-012-0007-2

    Article  Google Scholar 

  8. Lelas, J.L., Merriman, G.J., Riley, P.O., Kerrigan, D.C.: Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture 17, 106–112 (2003). https://doi.org/10.1016/S0966-6362(02)00060-7

    Article  Google Scholar 

  9. Fleischer, C., Reinicke, C., Hommel, G.: Predicting the intended motion with EMG signals for an exoskeleton orthosis controller. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2029–2034. IEEE (2005)

    Google Scholar 

  10. Liu, L., Luken, M., Leonhardt, S., Misgeld, B.J.E.: EMG-driven model-based knee torque estimation on a variable impedance actuator orthosis. In: IEEE International Conference on Cyborg and Bionic Systems (CBS), pp. 262–267. IEEE (2017)

    Google Scholar 

  11. Durandau, G., Farina, D., Sartori, M.: Robust real-time musculoskeletal modeling driven by electromyograms. IEEE Trans. Biomed. Eng. 65, 556–564 (2018). https://doi.org/10.1109/TBME.2017.2704085

    Article  Google Scholar 

  12. Li, Y., Chen, W., Yang, H., et al.: Joint torque closed-loop estimation using NARX neural network based on sEMG signals. IEEE Access 8 (2020). https://doi.org/10.1109/ACCESS.2020.3039983

  13. Lu, L., Wu, Q., Chen, X., et al.: Development of a sEMG-based torque estimation control strategy for a soft elbow exoskeleton. Rob. Auton. Syst. 111, 88–98 (2019). https://doi.org/10.1016/j.robot.2018.10.017

    Article  Google Scholar 

  14. Ullauri, J.B., Peternel, L., Ugurlu, B., et al.: On the EMG-based torque estimation for humans coupled with a force-controlled elbow exoskeleton. In: 2015 International Conference on Advanced Robotics (ICAR), pp. 302–307. IEEE (2015)

    Google Scholar 

  15. Wang, C., Peng, L., Hou, Z.-G., et al.: sEMG-based torque estimation using time-delay ANN for control of an upper-limb rehabilitation robot. In: 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), pp. 585–591. IEEE (2018)

    Google Scholar 

  16. Yang, N., Li, J., Xu, P., et al.: Design of elbow rehabilitation exoskeleton robot with sEMG-based torque estimation control strategy. In: 2022 6th International Conference on Robotics and Automation Sciences (ICRAS), pp. 105–113. IEEE (2022)

    Google Scholar 

  17. Moreira, L., Figueiredo, J., Vilas-Boas, J.P., Santos, C.P.: Kinematics, speed, and anthropometry-based ankle joint torque estimation: a deep learning regression approach. Machines 9, 154 (2021). https://doi.org/10.3390/machines9080154

    Article  Google Scholar 

  18. Figueiredo, J., Santos, C.P., Moreno, J.C.: Smart wearable orthosis to assist impaired human walking (2019)

    Google Scholar 

  19. Bortole, M., Venkatakrishnan, A., Zhu, F., et al.: The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J. Neuroeng. Rehabil. 12, 54 (2015). https://doi.org/10.1186/s12984-015-0048-y

    Article  Google Scholar 

  20. Figueiredo, J., Carvalho, S., Vilas-Boas, J.P., et al.: Wearable inertial sensor system towards daily human kinematic gait analysis : benchmarking analysis to MVN BIOMECH. Sensors (2020). https://doi.org/10.3390/s20082185

    Article  Google Scholar 

  21. Figueiredo, J., Ferreira, C., Costa, L., et al.: Instrumented insole system for ambulatory and robotic walking assistance: first advances. In: IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC 2017) (2017)

    Google Scholar 

  22. Pinheiro, C., Figueiredo, J., Magalhães, N., Santos, C.P.: Wearable biofeedback improves human-robot compliance during ankle-foot exoskeleton-assisted gait training: a pre-post controlled study in healthy participants. Sensors 20, 5876 (2020). https://doi.org/10.3390/s20205876

    Article  Google Scholar 

  23. Delsys Incorporated: TRIGNO ® Wireless System SDK User’s Guide, pp. 1–29 (2019)

    Google Scholar 

  24. Lévesque, L.: Nyquist sampling theorem: understanding the illusion of a spinning wheel captured with a video camera. Phys. Educ. 49, 697–705 (2014). https://doi.org/10.1088/0031-9120/49/6/697

    Article  Google Scholar 

  25. Kerrigan, D.C., Todd, M.K., Croce, U.D.: Gender differences in joint biomechanics during walking. Am. J. Phys. Med. Rehabil. 77, 2–7 (1998). https://doi.org/10.1097/00002060-199801000-00002

    Article  Google Scholar 

  26. Karatayev, A.Y., Burlakova, L.E., Miller, T.D., Perrelli, M.F.: Reconstructing historical range and population size of an endangered mollusc: long-term decline of Popenaias popeii in the Rio Grande, Texas. Hydrobiologia 810(1), 333–349 (2015). https://doi.org/10.1007/s10750-015-2551-3

    Article  Google Scholar 

  27. Moreira, L., Figueiredo, J., Fonseca, P., et al.: Lower limb kinematic, kinetic, and EMG data from young healthy humans during walking at controlled speeds. Sci. Data 8, 103 (2021). https://doi.org/10.1038/s41597-021-00881-3

    Article  Google Scholar 

  28. Moreira, L.: Assist-as-needed EMG-based control strategy for powered wearable assistive devices. Universidade do Minho (2019)

    Google Scholar 

  29. ONNX Runtime. https://onnxruntime.ai/

  30. Shah, B., Bhavsar, H.: Time complexity in deep learning models. Procedia Comput. Sci. 215, 202–210 (2022). https://doi.org/10.1016/j.procs.2022.12.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Figueiredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moreira, L., Barbosa, R.M., Figueiredo, J., Fonseca, P., Vilas-Boas, J.P., Santos, C.P. (2024). Real-Time Torque Estimation Using Human and Sensor Data Fusion for Exoskeleton Assistance. In: Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M. (eds) Robot 2023: Sixth Iberian Robotics Conference. ROBOT 2023. Lecture Notes in Networks and Systems, vol 978. Springer, Cham. https://doi.org/10.1007/978-3-031-59167-9_37

Download citation

Publish with us

Policies and ethics