Skip to main content

UAV-Assisted Navigation for Insect Traps in Olive Groves

  • Conference paper
  • First Online:
Robot 2023: Sixth Iberian Robotics Conference (ROBOT 2023)

Abstract

Unmanned Aerial Vehicles (UAVs) have emerged as valuable tools in precision agriculture due to their ability to provide timely and detailed information over large agricultural areas. In this sense, this work aims to evaluate the semi-autonomous navigation capacity of a multirotor UAV when applied in the field of precision agriculture. For this, a small aircraft is used to identify and track a set of fiducial markers (Ar_Track_Alvar) in an environment that simulates inspections of insect traps in olive groves. The purpose of this marker is to provide a visual reference point for the drone’s navigation system. Once the Ar_Track_Alvar marker is detected, the robot will receive navigation information based on the marker’s position to approach the specific trap. The experimental setup evaluated the computer vision algorithm applied to the UAV to make it recognize the Ar_Track_Alvar marker and then reach the trap efficiently. Experimental tests were conducted in a indoor and outdoor environment using DJI Tello. The results demonstrated the feasibility of applying these fiducial markers as a solution for the UAV’s navigation in this proposed scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., Moscholios, I.: A compilation of UAV applications for precision agriculture. Comput. Netw. 172, 107148 (2020)

    Article  Google Scholar 

  2. Roosjen, P.P.J., Kellenberger, B., Kooistra, L., Green, D.R., Fahrentrapp, J.: Deep learning for automated detection of Drosophila suzukii: potential for UAV-based monitoring. Pest Manage. Sci. 76(9), 2994–3002 (2020)

    Article  Google Scholar 

  3. de Castro, G.G.R., et al.: Adaptive path planning for fusing rapidly exploring random trees and deep reinforcement learning in an agriculture dynamic environment UAVs. Agriculture 13(2), 354 (2023)

    Article  Google Scholar 

  4. de Castro, G.G.R., Pinto, M.F., Biundini, I.Z., Melo, A.G., Marcato, A.L.M., Haddad, D.B.: Dynamic path planning based on neural networks for aerial inspection. J. Control Autom. Electr. Syst. 34(1), 85–105 (2023)

    Article  Google Scholar 

  5. Berger, G.S., et al.: Cooperative heterogeneous robots for autonomous insects trap monitoring system in a precision agriculture scenario. Agriculture 13(2), 239 (2023)

    Article  Google Scholar 

  6. Kulbacki, M., et al.: Survey of drones for agriculture automation from planting to harvest. In: 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES), pp. 000353–000358. IEEE (2018)

    Google Scholar 

  7. Manfreda, S., et al.: On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 10(4), 641 (2018)

    Google Scholar 

  8. Maes, W.H., Steppe, K.: Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 24(2), 152–164 (2019)

    Article  Google Scholar 

  9. Hajjaj, S.S.H., Sahari, K.S.M.: Review of research in the area of agriculture mobile robots. In: Mat Sakim, H.A., Mustaffa, M.T. (eds.) The 8th International Conference on Robotic, Vision, Signal Processing & Power Applications. LNEE, vol. 291, pp. 107–117. Springer, Singapore (2014). https://doi.org/10.1007/978-981-4585-42-2_13

    Chapter  Google Scholar 

  10. Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., Sun, X.: A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sens. 13(6), 1204 (2021)

    Article  Google Scholar 

  11. Kalaitzakis, M., Cain, B., Carroll, S., Ambrosi, A., Whitehead, C., Vitzilaios, N.: Fiducial markers for pose estimation: overview, applications and experimental comparison of the ARTag, AprilTag, ArUco and STag markers. J. Intell. Robot. Syst. 101, 1–26 (2021). https://doi.org/10.1007/s10846-020-01307-9

    Article  Google Scholar 

  12. Kalaitzakis, M., Cain, B., Vitzilaios, N., Rekleitis, I., Moulton, J.: A marsupial robotic system for surveying and inspection of freshwater ecosystems. J. Field Robot. 38(1), 121–138 (2021)

    Article  Google Scholar 

  13. Deeds, J., et al.: Autonomous vision-based target detection using unmanned aerial vehicle. In: 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1078–1081. IEEE (2018)

    Google Scholar 

  14. Zhang, W., Gong, L., Huang, S., Shaoteng, W., Liu, C.L.: Factor graph-based high-precision visual positioning for agricultural robots with fiducial markers. Comput. Electron. Agric. 201, 107295 (2022)

    Article  Google Scholar 

  15. Guo, Y., Guo, J., Liu, C., Xiong, H., Chai, L., He, D.: Precision landing test and simulation of the agricultural UAV on apron. Sensors 20(12), 3369 (2020)

    Article  Google Scholar 

  16. Grlj, C.G., Krznar, N., Pranjić, M.: A decade of UAV docking stations: a brief overview of mobile and fixed landing platforms. Drones 6(1), 17 (2022)

    Article  Google Scholar 

  17. Zhang, N., Wang, M., Wang, N.: Precision agriculture - a worldwide overview. Comput. Electron. Agric. 36(2–3), 113–132 (2002)

    Article  Google Scholar 

  18. Berger, G.S., et al.: A YOLO-based insect detection: potential use of small multirotor unmanned aerial vehicles (UAVs) monitoring. In: International Conference on Optimization, Learning Algorithms and Applications (OL2A), p. 16 (2023, accepted)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020), SusTEC (LA/P/0007/2021), Oleachain “Skills for sustainability and innovation in the value chain of traditional olive groves in the Northern Interior of Portugal” (Norte06-3559-FSE-000188), Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ) and Fundação de Amparo á Pesquisa do Estado do Rio de Janeiro (FAPERJ). The authors thank Marta Sofia Madureira from the Agrobio Tecnologia - Insects Laboratory, part of the Mountain Research Center (CIMO), for the technical support provided throughout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido S. Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berger, G.S. et al. (2024). UAV-Assisted Navigation for Insect Traps in Olive Groves. In: Marques, L., Santos, C., Lima, J.L., Tardioli, D., Ferre, M. (eds) Robot 2023: Sixth Iberian Robotics Conference. ROBOT 2023. Lecture Notes in Networks and Systems, vol 978. Springer, Cham. https://doi.org/10.1007/978-3-031-59167-9_8

Download citation

Publish with us

Policies and ethics