Abstract
In this paper, we introduce NEExT(Network Embedding Exploration Tool) for embedding collections of graphs via user-defined node features. The advantages of the framework are twofold: (i) the ability to easily define your own interpretable node-based features in view of the task at hand, and (ii) fast embedding of graphs provided by the Vectorizers library. In this exploratory work, we demonstrate the usefulness of NEExT on collections of synthetic and real-world graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Aggarwal, M., Murty, M.N.: Machine learning in social networks: embedding nodes, edges, communities, and graphs. Springer Nature (2020)
Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence embeddings. In: International Conference on Learning Representations (2017)
Barrett, J., Kamiński, B., Pankratz, B., Prałat, P., Théberge, F.: Self-similarity of communities of the ABCD model. preprint, arXiv (2023)
Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J., Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21(suppl_1), i47–i56 (2005)
Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Advances in Neural Information Processing Systems. vol. 26. Curran Associates, Inc. (2013)
Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34(2), 786–797 (1991)
Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: kdd, vol. 96, pp. 226–231 (1996)
Kamiński, B., Kraiński, Ł, Prałat, P., Théberge, F.: A multi-purposed unsupervised framework for comparing embeddings of undirected and directed graphs. Network Sci. 10(4), 323–346 (2022)
Kamiński, B., Pankratz, B., Prałat, P., Théberge, F.: Modularity of the ABCD random graph model with community structure. J. Complex Networks 10(6), cnac050 (2022)
Kamiński, B., Prałat, P., Théberge, F.: Artificial benchmark for community detection (ABCD)-fast random graph model with community structure. Network Sci. 9(2), 153–178 (2021)
Kamiński, B., Prałat, P., Théberge, F.: Mining Complex Networks. CRC Press, Boca Raton (2022)
Kamiński, B., Prałat, P., Théberge, F.: Artificial benchmark for community detection with outliers (ABCD+o). Appl. Netw. Sci. 8(1), 25 (2023)
Kamiński, B., Prałat, P., Théberge, F.: Hypergraph artificial benchmark for community detection (h–ABCD). J. Complex Networks 11(4), cnad028 (2023)
Kamiński, B., Prałat, P., Théberge, F., Zajac, S.: Predicting properties of nodes via community-aware features. arXiv preprint 2311.04730 (2023). https://doi.org/10.48550/arXiv.2311.04730
Kamiński, B., Olczak, T., Pankratz, B., Prałat, P., Théberge, F.: Properties and performance of the ABCDE random graph model with community structure. Big Data Res. 30, 100348 (2022)
Kolouri, S., Naderializadeh, N., Rohde, G.K., Hoffmann, H.: Wasserstein embedding for graph learning. In: International Conference on Learning Representations (2021)
Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)
Narayanan, A., Chandramohan, M., Chen, L., Liu, Y., Saminathan, S.: subgraph2vec: learning distributed representations of rooted sub-graphs from large graphs. arXiv preprint arXiv:1606.08928 (2016)
Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017)
Song, C., Havlin, S., Makse, H.A.: Self-similarity of complex networks. Nature 433(7024), 392–395 (2005)
Sutherland, J.J., O’brien, L.A., Weaver, D.F.: Spline-fitting with a genetic algorithm: a method for developing classification structure- activity relationships. J. Chem. Inf. Comput. Sci. 43(6), 1906–1915 (2003)
Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., Borgwardt, K.: Wasserstein weisfeiler-lehman graph kernels. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Villani, C., et al.: Optimal Transport: Old and New, vol. 338. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-71050-9
Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical compound retrieval and classification. Knowl. Inf. Syst. 14, 347–375 (2008)
Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dehghan, A., Prałat, P., Théberge, F. (2024). Network Embedding Exploration Tool (NEExT). In: Dewar, M., et al. Modelling and Mining Networks. WAW 2024. Lecture Notes in Computer Science, vol 14671. Springer, Cham. https://doi.org/10.1007/978-3-031-59205-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-59205-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-59204-1
Online ISBN: 978-3-031-59205-8
eBook Packages: Computer ScienceComputer Science (R0)