Skip to main content

Efficient Computation of K-Edge Connected Components: An Empirical Analysis

  • Conference paper
  • First Online:
Modelling and Mining Networks (WAW 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14671))

Included in the following conference series:

  • 141 Accesses

Abstract

Graphs play a pivotal role in representing complex relationships across various domains, such as social networks and bioinformatics. Key to many applications is the identification of communities or clusters within these graphs, with k-edge connected components emerging as an important method for finding well-connected communities. Although there exist other techniques such as k-plexes, k-cores, and k-trusses, they are known to have some limitations.

This study delves into four existing algorithms designed for computing maximal k-edge connected subgraphs. We conduct a thorough study of these algorithms to understand the strengths and weaknesses of each algorithm in detail and propose algorithmic refinements to optimize their performance. We provide a careful implementation of each of these algorithms, using which we analyze and compare their performance on graphs of varying sizes. Our work is the first to provide such a direct experimental comparison of these four methods. Finally, we also address an incorrect claim made in the literature about one of these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The full version of this paper is available here.

  2. 2.

    https://github.com/Haniehsadri/KECC.

References

  1. Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of maximal k-edge-connected subgraphs in large networks by random contraction. In: CIKM, pp. 909–918 (2013)

    Google Scholar 

  2. Barabási, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004)

    Article  Google Scholar 

  3. Brin, S., Page, L.: Anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

    Article  Google Scholar 

  4. Chang, L., Wang, Z.: A near-optimal approach to edge connectivity-based hierarchical graph decomposition. VLDB J. 15, 1–23 (2023)

    Google Scholar 

  5. Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: SIGMOD, pp. 205–216 (2013)

    Google Scholar 

  6. Chechik, S., Hansen, T.D., Italiano, G.F., Loitzenbauer, V., Parotsidis, N.: Faster algorithms for computing maximal 2-connected subgraphs in sparse directed graphs. In: SODA, pp. 1900–1918 (2017)

    Google Scholar 

  7. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02094-0_7

  8. Esfahani, F., Daneshmand, M., Srinivasan, V., Thomo, A., Wu, K.: Scalable probabilistic truss decomposition using central limit theorem and h-index. Distrib. Parallel Databases 40(2–3), 299–333 (2022)

    Article  Google Scholar 

  9. Esfahani, F., Srinivasan, V., Thomo, A., Wu, K.: Efficient computation of probabilistic core decomposition at web-scale. In: EDBT, pp. 325–336 (2019)

    Google Scholar 

  10. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  11. Galil, Z., Italiano, G.F.: Reducing edge connectivity to vertex connectivity. ACM SIGACT News 22(1), 57–61 (1991)

    Article  Google Scholar 

  12. Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    Article  Google Scholar 

  13. Karger, D.R.: Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm. In: SODA, pp. 21–30 (1993)

    Google Scholar 

  14. Khaouid, W., Barsky, M., Venkatesh, S., Thomo, A.: K-core decomposition of large networks on a single PC. PVLDB 9(1), 13–23 (2015)

    Google Scholar 

  15. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kronecker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–1042 (2010)

    MathSciNet  Google Scholar 

  16. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: IMC 2007, pp. 29–42 (2007)

    Google Scholar 

  17. Nagamochi, H., Ibaraki, T.: A linear time algorithm for computing 3-edge-connected components in a multigraph. Jpn. J. Ind. Appl. Math. 9, 163–180 (1992)

    Article  MathSciNet  Google Scholar 

  18. Nagamochi, H., Watanabe, T.: Computing k-edge-connected components of a multigraph. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 76(4), 513–517 (1993)

    Google Scholar 

  19. Newman, M.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  20. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. In: Stanford InfoLab (1999)

    Google Scholar 

  21. Seidman, S.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  22. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. 100(21), 12123–12128 (2003)

    Article  Google Scholar 

  23. Sun, H., et al.: Efficient k-edge connected component detection through an early merging and splitting strategy. Knowl. Based Syst. 111, 63–72 (2016)

    Article  Google Scholar 

  24. Tsin, Y.H.: Yet another optimal algorithm for 3-edge-connectivity. J. Discr. Algorithms 7(1), 130–146 (2009)

    Article  MathSciNet  Google Scholar 

  25. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–823 (2012)

    Google Scholar 

  26. Wang, T., Zhang, Y., Chin, F.Y., Ting, H.F., Tsin, Y.H., Poon, S.H.: A simple algorithm for finding all k-edge-connected components. PLoS ONE 10(9), e0136264 (2015)

    Article  Google Scholar 

  27. Wu, J., Goshulak, A., Srinivasan, V., Thomo, A.: K-truss decomposition of large networks on a single consumer-grade machine. In: ASONAM, pp. 873–880 (2018)

    Google Scholar 

  28. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2015)

    Article  Google Scholar 

  29. Zhou, R., Liu, C., Yu, J.X., Liang, W., Chen, B., Li, J.: Finding maximal k-edge-connected subgraphs from a large graph. In: Proceedings of the 15th International Conference on Extending Database Technology, pp. 480–491 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanieh Sadri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sadri, H., Srinivasan, V., Thomo, A. (2024). Efficient Computation of K-Edge Connected Components: An Empirical Analysis. In: Dewar, M., et al. Modelling and Mining Networks. WAW 2024. Lecture Notes in Computer Science, vol 14671. Springer, Cham. https://doi.org/10.1007/978-3-031-59205-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59205-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59204-1

  • Online ISBN: 978-3-031-59205-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics