Abstract
This paper presents a conceptual framework for addressing the challenges in translating Malay-English code-switched texts using neural machine translation. The framework comprises of three phases: language identification, code-switching type identification, and segment translation. In the language identification phase, a trained model attaches language tags (M for Malay, E for English, M-E for ambiguous) to each word. Code-switching types, including intra-sentential (AM and AE) and inter-sentential (EM and EE), are identified in the code-switching type identification phase. The segment translation phase utilizes an RNN model trained on a Malay-English code-switched parallel corpus and a homonyms dictionary with POS tagging. Our framework addresses linguistic characteristics, informal language usage, structural differences, and ambiguity. It contributes to the advancement of machine translation in code-switching contexts. Despite the conceptual nature of the framework without concrete results, our thorough analysis of code-switching types and associated challenges lays a foundation for future model enhancements. By providing a comprehensive solution, it enables more accurate and effective communication in code-switched language scenarios. Further research can build upon this framework to enhance code-switched translation models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mahir, N.A., Jarjis, M.K.S.: The use of Malay Malaysian English in Malaysian English: key considerations. In: The Second Biennial International Conference on Teaching and Learning of English in Asia: Exploring New Frontiers (TELiA2), Langkawi, pp. 1–9 (2007)
Zhang, C.: An analysis of morphological features of code-switching in Chinese netspeak. Int. J. English Linguist. 4(4), 88–92 (2014)
Phua, Y.T., Navaratnam, S., Kang, C.-M., Che, W.-S.: Sequence-to-sequence neural machine translation for English-Malay. IAES Int. J. Artif. Intell. (IJ-AI) 11(2), 658–665 (2022)
Hashim, A.: Crosslinguistic influence in the written english of malay undergraduates. J. Mod. Lang. 12(1), 60–76 (2017)
Hidayatullah, A.F., Qazi, A., Lai, D.T.C., Apong, R.A.: A systematic review on language identification of code-mixed text: techniques, data availability, challenges, and framework development. IEEE Access 10, 122812–122831 (2022)
Code-Switching and Code-Mixing – What You Need to Know. https://bilinguistics.com/code-switching-and-code-mixing/. Accessed 21 May 2023
Khalil, S.M., Firda, M.S.Z.M.: Inter-sentential and intra-sentential code switching in parliamentary debate. Int. J. Mod. Lang. Appl. Linguist. 2(4), 29–35 (2018)
James, J., et al.: Language models for code-switch detection of te reo māori and english in a low-resource setting. In: Findings of the Association for Computational Linguistics: NAACL 2022, pp. 650–660 (2022)
Sabri, N., Edalat, A., Bahrak, B.: Sentiment analysis of persian-english code-mixed texts. In: 2021 26th International Computer Conference, Computer Society of Iran (CSICC), Iran, pp. 1–4. IEEE (2021)
Lal, Y.K., Kumar, V., Dhar, M., Shrivastava, M., Koehn, P.: De-mixing sentiment from code-mixed text. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pp. 371–377. Association for Computational Linguistics, Italy (2019)
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, vol. 1 (Long and Short Papers), Minneapolis, MN, USA, pp. 4171–4186. Association for Computational Linguistics (2019)
Mukherjee, S., Prasan, V., Nediyanchath, A., Shah, M., Kumar, N.: Robust deep learning based sentiment classification of code-mixed text. In: Proceedings of the 16th International Conference on Natural Language Processing, Hyderabad, India, pp. 124–129. NLP Association of India (NLPAI) (2019)
Vissamsetti, S.H., Pravallika, K.S.S., Jadhav, S.C., Kommanti, H.B.: Offensiveness detection in hinglish code-switched language. In: Raman, I., Ganesan, P., Sureshkumar, V., Ranganathan, L. (eds.) International Conference on Computational Intelligence, Cyber Security, and Computational Models 2021, vol. 1631, pp. 124–135. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15556-7_9
Adilazuarda, M.F., Cahyawijaya, S., Winata, G.I., Fung, P., Purwarianti, A.: IndoRobusta: towards robustness against diverse code-mixed Indonesian local languages. In: Proceedings of the First Workshop on Scaling Up Multilingual Evaluation, pp. 25–34. Association for Computational Linguistics, Online (2022)
Patwa, P., et al.: SemEval-2020 task 9: overview of sentiment analysis of code-mixed tweets. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 774–790. International Committee for Computational Linguistics, Barcelona (online) (2020)
Song, K., Zhang, Y., Yu, H., Luo, W., Wang, K., Zhang, M.: Code-switching for enhancing NMT with pre-specified translation. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 449–459. Association for Computational Linguistics (2019)
Dinu, G., Mathur, P., Federico, M., Al-Onaizan, Y.: Training neural machine translation to apply terminology constraints. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, pp. 3063–3068. Association for Computational Linguistics (2019)
Weller, O., et al.: End-to-end speech translation for code switched speech. In: Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, pp. 1435–1448. Association for Computational Linguistics (2022)
Lee, G., Li, H.: Modeling code-switch languages using bilingual parallel corpus. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 860–870. Association for Computational Linguistics, Online (2020)
Winata, G.I., Madotto, A., Wu, C.-S., Fung, P.: Code-switched language models using neural based synthetic data from parallel sentences. In: Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), Hong Kong, China, pp. 271–280. Association for Computational Linguistics (2019)
Zabha, N.I., Ayop, Z., Anawar, S., Hamid, E., Abidin, Z.Z.: Developing cross-lingual sentiment analysis of malay twitter data using lexicon-based approach. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 10(1), 346–351 (2019)
Kasmuri, E., Basiron, H.: Segregation of code-switching sentences using rule-based technique. Int. J. Adv. Soft Comput. Appl. 12(1), 50–64 (2020)
Nguyen, L., Mayeux, O., Yuan, Z.: Code-switching input for machine translation: a case study of Vietnamese–English data. Int. J. Multilingualism 1–22 (2023)
Xu, J., Yvon, F.: Can you traducir this? Machine translation for code-switched input. In: Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pp. 84–94. Association for Computational Linguistics, Online (2021)
Appicharla, R., Gupta, K.K., Ekbal, A., Bhattacharyya, P.: IITP-MT at CALCS2021: English to Hinglish neural machine translation using unsupervised synthetic code-mixed parallel corpus. In: Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pp. 31–35. Association for Computational Linguistics, Online (2021)
Jadhav, I., Kanade, A., Waghmare, V., Chandok, S.S., Jarali, A.: Code-mixed Hinglish to English language translation framework. In: 2022 International Conference on Sustainable Computing and Data Communication Systems, Erode, India, pp. 684–688. IEEE (2022)
Song, Z., et al.: switch-GLAT: multilingual parallel machine translation via code-switch decoder. In: International Conference on Learning Representations. Online (2022)
Chen, S., Aguilar, G., Srinivasan, A., Diab, M., Solorio, T.: CALCS 2021 Shared Task: Machine Translation for Code-Switched Data. Preprint (2022)
Yang, Z., Hu, B., Han, A., Huang, S., Ju, Q. CSP: code-switching pre-training for neural machine translation. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 2624–2636. Association for Computational Linguistics, Online (2020)
Gupta, Y., Raghuwanshi, G., Tripathi, A.: A new methodology for language identification in social media code-mixed text. In: Hassanien, A.E., Bhatnagar, R., Darwish, A. (eds.) AMLTA 2020. AISC, vol. 1141, pp. 243–254. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-3383-9_22
Mave, D., Maharjan, S., Solorio, T. Language identification and analysis of code-switched social media text. In: Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching, Melbourne, Australia, pp. 51–61. Association for Computational Linguistics (2018)
Menacer, M.A., Langlois, D., Jouvet, D., Fohr, D., Mella, O., Smaïli, K.: Machine translation on a parallel code-switched corpus. In: Meurs, M.-J., Rudzicz, F. (eds.) Canadian AI 2019. LNCS (LNAI), vol. 11489, pp. 426–432. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18305-9_40
Acknowledgement
This research was supported by the Ministry of Higher Education (MOHE) through the Fundamental Research Grant Scheme (FRGS/1/2021/ICT02/UTM/02).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wong, Y.K., Huspi, S.H. (2024). A Conceptual Framework for Malay-English Code-Switched Neural Machine Translation. In: Saeed, F., Mohammed, F., Fazea, Y. (eds) Advances in Intelligent Computing Techniques and Applications. IRICT 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-031-59707-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-59707-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-59706-0
Online ISBN: 978-3-031-59707-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)