Skip to main content

A Conceptual Framework for Malay-English Code-Switched Neural Machine Translation

  • Conference paper
  • First Online:
Advances in Intelligent Computing Techniques and Applications (IRICT 2023)

Abstract

This paper presents a conceptual framework for addressing the challenges in translating Malay-English code-switched texts using neural machine translation. The framework comprises of three phases: language identification, code-switching type identification, and segment translation. In the language identification phase, a trained model attaches language tags (M for Malay, E for English, M-E for ambiguous) to each word. Code-switching types, including intra-sentential (AM and AE) and inter-sentential (EM and EE), are identified in the code-switching type identification phase. The segment translation phase utilizes an RNN model trained on a Malay-English code-switched parallel corpus and a homonyms dictionary with POS tagging. Our framework addresses linguistic characteristics, informal language usage, structural differences, and ambiguity. It contributes to the advancement of machine translation in code-switching contexts. Despite the conceptual nature of the framework without concrete results, our thorough analysis of code-switching types and associated challenges lays a foundation for future model enhancements. By providing a comprehensive solution, it enables more accurate and effective communication in code-switched language scenarios. Further research can build upon this framework to enhance code-switched translation models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mahir, N.A., Jarjis, M.K.S.: The use of Malay Malaysian English in Malaysian English: key considerations. In: The Second Biennial International Conference on Teaching and Learning of English in Asia: Exploring New Frontiers (TELiA2), Langkawi, pp. 1–9 (2007)

    Google Scholar 

  2. Zhang, C.: An analysis of morphological features of code-switching in Chinese netspeak. Int. J. English Linguist. 4(4), 88–92 (2014)

    Article  Google Scholar 

  3. Phua, Y.T., Navaratnam, S., Kang, C.-M., Che, W.-S.: Sequence-to-sequence neural machine translation for English-Malay. IAES Int. J. Artif. Intell. (IJ-AI) 11(2), 658–665 (2022)

    Google Scholar 

  4. Hashim, A.: Crosslinguistic influence in the written english of malay undergraduates. J. Mod. Lang. 12(1), 60–76 (2017)

    Google Scholar 

  5. Hidayatullah, A.F., Qazi, A., Lai, D.T.C., Apong, R.A.: A systematic review on language identification of code-mixed text: techniques, data availability, challenges, and framework development. IEEE Access 10, 122812–122831 (2022)

    Article  Google Scholar 

  6. Code-Switching and Code-Mixing – What You Need to Know. https://bilinguistics.com/code-switching-and-code-mixing/. Accessed 21 May 2023

  7. Khalil, S.M., Firda, M.S.Z.M.: Inter-sentential and intra-sentential code switching in parliamentary debate. Int. J. Mod. Lang. Appl. Linguist. 2(4), 29–35 (2018)

    Article  Google Scholar 

  8. James, J., et al.: Language models for code-switch detection of te reo māori and english in a low-resource setting. In: Findings of the Association for Computational Linguistics: NAACL 2022, pp. 650–660 (2022)

    Google Scholar 

  9. Sabri, N., Edalat, A., Bahrak, B.: Sentiment analysis of persian-english code-mixed texts. In: 2021 26th International Computer Conference, Computer Society of Iran (CSICC), Iran, pp. 1–4. IEEE (2021)

    Google Scholar 

  10. Lal, Y.K., Kumar, V., Dhar, M., Shrivastava, M., Koehn, P.: De-mixing sentiment from code-mixed text. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pp. 371–377. Association for Computational Linguistics, Italy (2019)

    Google Scholar 

  11. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, vol. 1 (Long and Short Papers), Minneapolis, MN, USA, pp. 4171–4186. Association for Computational Linguistics (2019)

    Google Scholar 

  12. Mukherjee, S., Prasan, V., Nediyanchath, A., Shah, M., Kumar, N.: Robust deep learning based sentiment classification of code-mixed text. In: Proceedings of the 16th International Conference on Natural Language Processing, Hyderabad, India, pp. 124–129. NLP Association of India (NLPAI) (2019)

    Google Scholar 

  13. Vissamsetti, S.H., Pravallika, K.S.S., Jadhav, S.C., Kommanti, H.B.: Offensiveness detection in hinglish code-switched language. In: Raman, I., Ganesan, P., Sureshkumar, V., Ranganathan, L. (eds.) International Conference on Computational Intelligence, Cyber Security, and Computational Models 2021, vol. 1631, pp. 124–135. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15556-7_9

    Chapter  Google Scholar 

  14. Adilazuarda, M.F., Cahyawijaya, S., Winata, G.I., Fung, P., Purwarianti, A.: IndoRobusta: towards robustness against diverse code-mixed Indonesian local languages. In: Proceedings of the First Workshop on Scaling Up Multilingual Evaluation, pp. 25–34. Association for Computational Linguistics, Online (2022)

    Google Scholar 

  15. Patwa, P., et al.: SemEval-2020 task 9: overview of sentiment analysis of code-mixed tweets. In: Proceedings of the Fourteenth Workshop on Semantic Evaluation, pp. 774–790. International Committee for Computational Linguistics, Barcelona (online) (2020)

    Google Scholar 

  16. Song, K., Zhang, Y., Yu, H., Luo, W., Wang, K., Zhang, M.: Code-switching for enhancing NMT with pre-specified translation. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 449–459. Association for Computational Linguistics (2019)

    Google Scholar 

  17. Dinu, G., Mathur, P., Federico, M., Al-Onaizan, Y.: Training neural machine translation to apply terminology constraints. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, pp. 3063–3068. Association for Computational Linguistics (2019)

    Google Scholar 

  18. Weller, O., et al.: End-to-end speech translation for code switched speech. In: Findings of the Association for Computational Linguistics: ACL 2022, Dublin, Ireland, pp. 1435–1448. Association for Computational Linguistics (2022)

    Google Scholar 

  19. Lee, G., Li, H.: Modeling code-switch languages using bilingual parallel corpus. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 860–870. Association for Computational Linguistics, Online (2020)

    Google Scholar 

  20. Winata, G.I., Madotto, A., Wu, C.-S., Fung, P.: Code-switched language models using neural based synthetic data from parallel sentences. In: Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), Hong Kong, China, pp. 271–280. Association for Computational Linguistics (2019)

    Google Scholar 

  21. Zabha, N.I., Ayop, Z., Anawar, S., Hamid, E., Abidin, Z.Z.: Developing cross-lingual sentiment analysis of malay twitter data using lexicon-based approach. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 10(1), 346–351 (2019)

    Google Scholar 

  22. Kasmuri, E., Basiron, H.: Segregation of code-switching sentences using rule-based technique. Int. J. Adv. Soft Comput. Appl. 12(1), 50–64 (2020)

    Google Scholar 

  23. Nguyen, L., Mayeux, O., Yuan, Z.: Code-switching input for machine translation: a case study of Vietnamese–English data. Int. J. Multilingualism 1–22 (2023)

    Google Scholar 

  24. Xu, J., Yvon, F.: Can you traducir this? Machine translation for code-switched input. In: Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pp. 84–94. Association for Computational Linguistics, Online (2021)

    Google Scholar 

  25. Appicharla, R., Gupta, K.K., Ekbal, A., Bhattacharyya, P.: IITP-MT at CALCS2021: English to Hinglish neural machine translation using unsupervised synthetic code-mixed parallel corpus. In: Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching, pp. 31–35. Association for Computational Linguistics, Online (2021)

    Google Scholar 

  26. Jadhav, I., Kanade, A., Waghmare, V., Chandok, S.S., Jarali, A.: Code-mixed Hinglish to English language translation framework. In: 2022 International Conference on Sustainable Computing and Data Communication Systems, Erode, India, pp. 684–688. IEEE (2022)

    Google Scholar 

  27. Song, Z., et al.: switch-GLAT: multilingual parallel machine translation via code-switch decoder. In: International Conference on Learning Representations. Online (2022)

    Google Scholar 

  28. Chen, S., Aguilar, G., Srinivasan, A., Diab, M., Solorio, T.: CALCS 2021 Shared Task: Machine Translation for Code-Switched Data. Preprint (2022)

    Google Scholar 

  29. Yang, Z., Hu, B., Han, A., Huang, S., Ju, Q. CSP: code-switching pre-training for neural machine translation. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 2624–2636. Association for Computational Linguistics, Online (2020)

    Google Scholar 

  30. Gupta, Y., Raghuwanshi, G., Tripathi, A.: A new methodology for language identification in social media code-mixed text. In: Hassanien, A.E., Bhatnagar, R., Darwish, A. (eds.) AMLTA 2020. AISC, vol. 1141, pp. 243–254. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-3383-9_22

    Chapter  Google Scholar 

  31. Mave, D., Maharjan, S., Solorio, T. Language identification and analysis of code-switched social media text. In: Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching, Melbourne, Australia, pp. 51–61. Association for Computational Linguistics (2018)

    Google Scholar 

  32. Menacer, M.A., Langlois, D., Jouvet, D., Fohr, D., Mella, O., Smaïli, K.: Machine translation on a parallel code-switched corpus. In: Meurs, M.-J., Rudzicz, F. (eds.) Canadian AI 2019. LNCS (LNAI), vol. 11489, pp. 426–432. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18305-9_40

    Chapter  Google Scholar 

Download references

Acknowledgement

This research was supported by the Ministry of Higher Education (MOHE) through the Fundamental Research Grant Scheme (FRGS/1/2021/ICT02/UTM/02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yit Khee Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wong, Y.K., Huspi, S.H. (2024). A Conceptual Framework for Malay-English Code-Switched Neural Machine Translation. In: Saeed, F., Mohammed, F., Fazea, Y. (eds) Advances in Intelligent Computing Techniques and Applications. IRICT 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-031-59707-7_5

Download citation

Publish with us

Policies and ethics