Abstract
This paper introduces a framework to study discrete optimization problems which are parametric in the following sense: their constraint matrices correspond to matrices over the ring \(\mathbb {Z}[x]\) of polynomials in one variable. We investigate in particular matrices whose subdeterminants all lie in a fixed set \(S\subseteq \mathbb {Z}[x]\). Such matrices, which we call totally S-modular matrices, are closed with respect to taking submatrices, so it is natural to look at minimally non-totally S-modular matrices which we call forbidden minors for S. Among other results, we prove that if S is finite, then the set of all determinants attained by a forbidden minor for S is also finite. Specializing to the integers, we subsequently obtain the following positive complexity results: the recognition problem for totally \(\pm \{0,1,a,a+1,2a+1\}\)-modular matrices with \(a\in \mathbb {Z}\backslash \lbrace -3,-2,1,2\rbrace \) and the integer linear optimization problem for totally \(\pm \lbrace 0,a,a+1,2a+1\rbrace \)-modular matrices with \(a\in \mathbb {Z}\backslash \lbrace -2,1\rbrace \) can be solved in polynomial time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aliev, I., Averkov, G., de Loera, J.A., Oertel, T.: Sparse representation of vectors in lattices and semigroups. Math. Program. 192, 519–546 (2022)
Aliev, I., De Loera, J.A., Eisenbrand, F., Oertel, T., Weismantel, R.: The support of integer optimal solutions. SIAM J. Optim. 28(3), 2152–2157 (2018)
Aliev, I., Henk, M., Oertel, T.: Distances to lattice points in knapsack polyhedra. Math. Program. 182, 175–198 (2020)
Aliev, I., De Loera, J.A., Oertel, T., O’Neill, C.: Sparse solutions of linear Diophantine equations. SIAM J. Appl. Algebra Geom. 1, 239–253 (2017)
Artmann, S., Eisenbrand, F., Glanzer, C., Oertel, T., Vempala, S., Weismantel, R.: A note on non-degenerate integer programs with small sub-determinants. Oper. Res. Lett. 44(5), 635–639 (2016)
Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for bimodular integer linear programming. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1206–1219 (2017)
Bonifas, N., Di Summa, M., Eisenbrand, F., Hähnle, N., Niemeier, M.: On sub-determinants and the diameter of polyhedra. Discret. Comput. Geom. 52, 102–115 (2014)
Celaya, M., Kuhlmann, S., Paat, J., Weismantel, R.: Proximity and flatness bounds for linear integer optimization. Math. Oper. Res. (2023)
Dadush, D.: Integer programming, lattice algorithms, and deterministic volume estimation. Ph.D. thesis, Georgia Institute of Technology (2012)
Dadush, D., Hähnle, N.: On the shadow simplex method for curved polyhedra. Discrete Comput. Geom. 56(4), 882–909 (2016)
Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res. Lett. 34, 564–568 (2006)
Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. ACM Trans. Algorithms 16(1), 1–14 (2019)
Fiorini, S., Joret, G., Weltge, S., Yuditsky, Y.: Integer programs with bounded subdeterminants and two nonzeros per row. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 13–24 (2022)
Glanzer, C., Stallknecht, I., Weismantel, R.: Notes on \(\{\)a, b, c\(\}\)-modular matrices. Viet. J. Math. 50(2), 469–485 (2022)
Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. In: Kuhn, H.W., Tucker, A.J. (eds.) Linear Inequalities and Related Systems, pp. 223–246 (1956)
Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)
Lang, S.: Algebra. Graduate Texts in Mathematics, Springer, New York (2005). https://doi.org/10.1007/978-1-4613-0041-0
Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)
Nägele, M., Nöbel, C., Santiago, R., Zenklusen, R.: Advances on strictly \(\varDelta \)-modular IPs. In: Del Pia, A., Kaibel, V. (eds.) IPCO 2023. LNCS, vol. 13904, pp. 393–407. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32726-1_28
Nägele, M., Santiago, R., Zenklusen, R.: Congruency-constrained TU problems beyond the bimodular case. In: Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 2743–2790. SIAM (2022)
Narayanan, H., Shah, R., Srivastava, N.: A spectral approach to polytope diameter. arxiv.org/abs/2101.12198 (2021)
Oxley, J., Walsh, Z.: 2-modular matrices. SIAM J. Discret. Math. 36(2), 1231–1248 (2022)
Paat, J., Stallknecht, I., Xu, L., Walsh, Z.: On the column number and forbidden submatrices for \(\varDelta \)-modular matrices. SIAM J. Discret. Math. 38(1), 1–18 (2024)
Reis, V., Rothvoss, T.: The subspace flatness conjecture and faster integer programming (2023). https://arxiv.org/abs/2303.14605
Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Combin. Theory Ser. B 92(2), 325–357 (2004). Special Issue Dedicated to Professor W.T. Tutte
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1986)
Seymour, P.D.: Decomposition of regular matroids. J. Combin. Theory Ser. B 28(3), 305–359 (1980)
Sylvester, J.J.: On the relation between the minor determinants of linearly equivalent quadratic functions. London Edinburgh Dublin Philos. Mag. J. Sci. 1(4), 295–305 (1851)
Acknowledgements
The authors are grateful to the reviewers for their valuable suggestions and comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Celaya, M., Kuhlmann, S., Weismantel, R. (2024). On Matrices over a Polynomial Ring with Restricted Subdeterminants. In: Vygen, J., Byrka, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2024. Lecture Notes in Computer Science, vol 14679. Springer, Cham. https://doi.org/10.1007/978-3-031-59835-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-59835-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-59834-0
Online ISBN: 978-3-031-59835-7
eBook Packages: Computer ScienceComputer Science (R0)