Skip to main content

On Matrices over a Polynomial Ring with Restricted Subdeterminants

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14679))

  • 723 Accesses

Abstract

This paper introduces a framework to study discrete optimization problems which are parametric in the following sense: their constraint matrices correspond to matrices over the ring \(\mathbb {Z}[x]\) of polynomials in one variable. We investigate in particular matrices whose subdeterminants all lie in a fixed set \(S\subseteq \mathbb {Z}[x]\). Such matrices, which we call totally S-modular matrices, are closed with respect to taking submatrices, so it is natural to look at minimally non-totally S-modular matrices which we call forbidden minors for S. Among other results, we prove that if S is finite, then the set of all determinants attained by a forbidden minor for S is also finite. Specializing to the integers, we subsequently obtain the following positive complexity results: the recognition problem for totally \(\pm \{0,1,a,a+1,2a+1\}\)-modular matrices with \(a\in \mathbb {Z}\backslash \lbrace -3,-2,1,2\rbrace \) and the integer linear optimization problem for totally \(\pm \lbrace 0,a,a+1,2a+1\rbrace \)-modular matrices with \(a\in \mathbb {Z}\backslash \lbrace -2,1\rbrace \) can be solved in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aliev, I., Averkov, G., de Loera, J.A., Oertel, T.: Sparse representation of vectors in lattices and semigroups. Math. Program. 192, 519–546 (2022)

    Article  MathSciNet  Google Scholar 

  2. Aliev, I., De Loera, J.A., Eisenbrand, F., Oertel, T., Weismantel, R.: The support of integer optimal solutions. SIAM J. Optim. 28(3), 2152–2157 (2018)

    Article  MathSciNet  Google Scholar 

  3. Aliev, I., Henk, M., Oertel, T.: Distances to lattice points in knapsack polyhedra. Math. Program. 182, 175–198 (2020)

    Article  MathSciNet  Google Scholar 

  4. Aliev, I., De Loera, J.A., Oertel, T., O’Neill, C.: Sparse solutions of linear Diophantine equations. SIAM J. Appl. Algebra Geom. 1, 239–253 (2017)

    Article  MathSciNet  Google Scholar 

  5. Artmann, S., Eisenbrand, F., Glanzer, C., Oertel, T., Vempala, S., Weismantel, R.: A note on non-degenerate integer programs with small sub-determinants. Oper. Res. Lett. 44(5), 635–639 (2016)

    Article  MathSciNet  Google Scholar 

  6. Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for bimodular integer linear programming. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1206–1219 (2017)

    Google Scholar 

  7. Bonifas, N., Di Summa, M., Eisenbrand, F., Hähnle, N., Niemeier, M.: On sub-determinants and the diameter of polyhedra. Discret. Comput. Geom. 52, 102–115 (2014)

    Article  MathSciNet  Google Scholar 

  8. Celaya, M., Kuhlmann, S., Paat, J., Weismantel, R.: Proximity and flatness bounds for linear integer optimization. Math. Oper. Res. (2023)

    Google Scholar 

  9. Dadush, D.: Integer programming, lattice algorithms, and deterministic volume estimation. Ph.D. thesis, Georgia Institute of Technology (2012)

    Google Scholar 

  10. Dadush, D., Hähnle, N.: On the shadow simplex method for curved polyhedra. Discrete Comput. Geom. 56(4), 882–909 (2016)

    Article  MathSciNet  Google Scholar 

  11. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res. Lett. 34, 564–568 (2006)

    Article  MathSciNet  Google Scholar 

  12. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. ACM Trans. Algorithms 16(1), 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  13. Fiorini, S., Joret, G., Weltge, S., Yuditsky, Y.: Integer programs with bounded subdeterminants and two nonzeros per row. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 13–24 (2022)

    Google Scholar 

  14. Glanzer, C., Stallknecht, I., Weismantel, R.: Notes on \(\{\)a, b, c\(\}\)-modular matrices. Viet. J. Math. 50(2), 469–485 (2022)

    Article  MathSciNet  Google Scholar 

  15. Hoffman, A.J., Kruskal, J.B.: Integral boundary points of convex polyhedra. In: Kuhn, H.W., Tucker, A.J. (eds.) Linear Inequalities and Related Systems, pp. 223–246 (1956)

    Google Scholar 

  16. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MathSciNet  Google Scholar 

  17. Lang, S.: Algebra. Graduate Texts in Mathematics, Springer, New York (2005). https://doi.org/10.1007/978-1-4613-0041-0

    Book  Google Scholar 

  18. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  19. Nägele, M., Nöbel, C., Santiago, R., Zenklusen, R.: Advances on strictly \(\varDelta \)-modular IPs. In: Del Pia, A., Kaibel, V. (eds.) IPCO 2023. LNCS, vol. 13904, pp. 393–407. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32726-1_28

    Chapter  Google Scholar 

  20. Nägele, M., Santiago, R., Zenklusen, R.: Congruency-constrained TU problems beyond the bimodular case. In: Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 2743–2790. SIAM (2022)

    Google Scholar 

  21. Narayanan, H., Shah, R., Srivastava, N.: A spectral approach to polytope diameter. arxiv.org/abs/2101.12198 (2021)

  22. Oxley, J., Walsh, Z.: 2-modular matrices. SIAM J. Discret. Math. 36(2), 1231–1248 (2022)

    Article  MathSciNet  Google Scholar 

  23. Paat, J., Stallknecht, I., Xu, L., Walsh, Z.: On the column number and forbidden submatrices for \(\varDelta \)-modular matrices. SIAM J. Discret. Math. 38(1), 1–18 (2024)

    Article  MathSciNet  Google Scholar 

  24. Reis, V., Rothvoss, T.: The subspace flatness conjecture and faster integer programming (2023). https://arxiv.org/abs/2303.14605

  25. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Combin. Theory Ser. B 92(2), 325–357 (2004). Special Issue Dedicated to Professor W.T. Tutte

    Article  MathSciNet  Google Scholar 

  26. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1986)

    Google Scholar 

  27. Seymour, P.D.: Decomposition of regular matroids. J. Combin. Theory Ser. B 28(3), 305–359 (1980)

    Article  MathSciNet  Google Scholar 

  28. Sylvester, J.J.: On the relation between the minor determinants of linearly equivalent quadratic functions. London Edinburgh Dublin Philos. Mag. J. Sci. 1(4), 295–305 (1851)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kuhlmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Celaya, M., Kuhlmann, S., Weismantel, R. (2024). On Matrices over a Polynomial Ring with Restricted Subdeterminants. In: Vygen, J., Byrka, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2024. Lecture Notes in Computer Science, vol 14679. Springer, Cham. https://doi.org/10.1007/978-3-031-59835-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59835-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59834-0

  • Online ISBN: 978-3-031-59835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics