Skip to main content

Integer Points in Arbitrary Convex Cones: The Case of the PSD and SOC Cones

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2024)

Abstract

We investigate the semigroup of integer points inside a convex cone. We extend classical results in integer linear programming to integer conic programming. We show that the semigroup associated with nonpolyhedral cones can sometimes have a notion of finite generating set. We show this is true for the cone of positive semidefinite matrices (PSD) and the second-order cone (SOC). Both cones have a finite generating set of integer points, similar in spirit to Hilbert bases, under the action of a finitely generated group. We also extend notions of total dual integrality, Gomory-Chvátal closure, and Carathéodory rank to integer points in arbitrary cones.

Due to space limitations, we omit several proofs. These can be found at

https://www.math.ucdavis.edu/~deloera/IPCO2024.pdf.

This research is partially based upon work supported by the National Science Foundation under Grant No. DMS-1929284 while the first, third, and fourth authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Discrete Optimization program. We thank Kurt Anstreicher, Renata Sotirov, Pablo Parrilo, Chiara Meroni, and Bento Natura for relevant comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aliev, I., De Loera, J.A., Eisenbrand, F., Oertel, T., Weismantel, R.: The support of integer optimal solutions. SIAM J. Optim. 28(3), 2152–2157 (2018)

    Article  MathSciNet  Google Scholar 

  2. Aliev, I., Averkov, G., De Loera, J.A., Oertel, T.: Sparse representation of vectors in lattices and semigroups. Math. Program. 192(1–2), 519–546 (2022)

    Article  MathSciNet  Google Scholar 

  3. Aliev, I., De Loera, J.A., Oertel, T., O’Neill, C.: Sparse solutions of linear Diophantine equations. SIAM J. Appl. Algebra Geom. 1(1), 239–253 (2017)

    Article  MathSciNet  Google Scholar 

  4. Barvinok, A.: A Course in Convexity, vol. 54. American Mathematical Society, Providence (2002)

    Google Scholar 

  5. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis, algorithms, and engineering applications. SIAM (2001)

    Google Scholar 

  6. Berndt, S., Brinkop, H., Jansen, K., Mnich, M., Stamm, T.: New support size bounds for integer programming, applied to MakeSpan minimization on uniformly related machines (2023). ArXiv:2305.08432

  7. de Carli Silva, M.K., Tuncel, L.: A notion of total dual integrality for convex, semidefinite, and extended formulations. SIAM J. Discret. Math. 34(1), 470–496 (2020)

    Article  MathSciNet  Google Scholar 

  8. Cass, D., Arpaia, P.J.: Matrix generation of Pythagorean n-tuples. Proc. Am. Math. Soc. 109(1), 1–7 (1990)

    MathSciNet  Google Scholar 

  9. Charnes, A., Cooper, W.W., Kortanek, K.: Duality in semi-infinite programs and some works of Haar and Carathéodory. Manage. Sci. 9(2), 209–228 (1963)

    Article  Google Scholar 

  10. Cook, W., Fonlupt, J., Schrijver, A.: An integer analogue of Caratheodory’s theorem. J. Comb. Theory, Ser. B 40(1), 63–70 (1986)

    Article  MathSciNet  Google Scholar 

  11. De Loera, J., Hemmecke, R., Köppe, M.: Algebraic and Geometric Ideas in the Theory of Discrete Optimization. MOS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics (2013)

    Google Scholar 

  12. Edmonds, J., Giles, R.: Total dual integrality of linear inequality systems. In: Progress in Combinatorial Optimization, pp. 117–129. Elsevier (1984)

    Google Scholar 

  13. Giles, F.R., Pulleyblank, W.R.: Total dual integrality and integer polyhedra. Linear Algebra Appl. 25, 191–196 (1979)

    Article  MathSciNet  Google Scholar 

  14. Kaveh, K., Khovanskii, A.G.: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. (2) 176(2), 925–978 (2012)

    Google Scholar 

  15. Ko, C.: On the decomposition of quadratic forms in six variables (dedicated to professor LJ Mordell on his fiftieth birthday). Acta Arith 3(1), 64–78 (1939)

    Article  Google Scholar 

  16. Letchford, A.N., Sørensen, M.M.: Binary positive semidefinite matrices and associated integer polytopes. Math. Program. 131(1–2), 253–271 (2012)

    Article  MathSciNet  Google Scholar 

  17. de Meijer, F., Sotirov, R.: The Chátal-Gomory procedure for integer SDPs with applications in combinatorial optimization. Math. Program. (2024)

    Google Scholar 

  18. de Meijer, F., Sotirov, R.: On integrality in semidefinite programming for discrete optimization. SIAM J. Optim. 34(1), 1071–1096 (2024)

    Google Scholar 

  19. Mordell, L.J.: The representation of a definite quadratic form as a sum of two others. Ann. Math. 38(4), 751 (1937)

    Article  MathSciNet  Google Scholar 

  20. Schrijver, A.: Theory of Linear and Integer Programming. Wiley Series in Discrete Mathematics & Optimization. Wiley, Hoboken (1998)

    Google Scholar 

  21. Schürmann, A.: Computational Geometry of Positive Definite Quadratic Forms: Polyhedral Reduction Theories, Algorithms, and Applications, vol. 48. American Mathematical Society, Providence (2009)

    Google Scholar 

  22. Sebö, A.: Hilbert bases, Caratheodory’s theorem and combinatorial optimization. In: Proceedings of the 1st Integer Programming and Combinatorial Optimization Conference, pp. 431–455 (1990)

    Google Scholar 

  23. Trott, S.M.: A pair of generators for the unimodular group. Can. Math. Bull. 5(3), 245–252 (1962)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luze Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Loera, J.A., Marsters, B., Xu, L., Zhang, S. (2024). Integer Points in Arbitrary Convex Cones: The Case of the PSD and SOC Cones. In: Vygen, J., Byrka, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2024. Lecture Notes in Computer Science, vol 14679. Springer, Cham. https://doi.org/10.1007/978-3-031-59835-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59835-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59834-0

  • Online ISBN: 978-3-031-59835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics