Abstract
We investigate the semigroup of integer points inside a convex cone. We extend classical results in integer linear programming to integer conic programming. We show that the semigroup associated with nonpolyhedral cones can sometimes have a notion of finite generating set. We show this is true for the cone of positive semidefinite matrices (PSD) and the second-order cone (SOC). Both cones have a finite generating set of integer points, similar in spirit to Hilbert bases, under the action of a finitely generated group. We also extend notions of total dual integrality, Gomory-Chvátal closure, and Carathéodory rank to integer points in arbitrary cones.
Due to space limitations, we omit several proofs. These can be found at
https://www.math.ucdavis.edu/~deloera/IPCO2024.pdf.
This research is partially based upon work supported by the National Science Foundation under Grant No. DMS-1929284 while the first, third, and fourth authors were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Discrete Optimization program. We thank Kurt Anstreicher, Renata Sotirov, Pablo Parrilo, Chiara Meroni, and Bento Natura for relevant comments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aliev, I., De Loera, J.A., Eisenbrand, F., Oertel, T., Weismantel, R.: The support of integer optimal solutions. SIAM J. Optim. 28(3), 2152–2157 (2018)
Aliev, I., Averkov, G., De Loera, J.A., Oertel, T.: Sparse representation of vectors in lattices and semigroups. Math. Program. 192(1–2), 519–546 (2022)
Aliev, I., De Loera, J.A., Oertel, T., O’Neill, C.: Sparse solutions of linear Diophantine equations. SIAM J. Appl. Algebra Geom. 1(1), 239–253 (2017)
Barvinok, A.: A Course in Convexity, vol. 54. American Mathematical Society, Providence (2002)
Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: analysis, algorithms, and engineering applications. SIAM (2001)
Berndt, S., Brinkop, H., Jansen, K., Mnich, M., Stamm, T.: New support size bounds for integer programming, applied to MakeSpan minimization on uniformly related machines (2023). ArXiv:2305.08432
de Carli Silva, M.K., Tuncel, L.: A notion of total dual integrality for convex, semidefinite, and extended formulations. SIAM J. Discret. Math. 34(1), 470–496 (2020)
Cass, D., Arpaia, P.J.: Matrix generation of Pythagorean n-tuples. Proc. Am. Math. Soc. 109(1), 1–7 (1990)
Charnes, A., Cooper, W.W., Kortanek, K.: Duality in semi-infinite programs and some works of Haar and Carathéodory. Manage. Sci. 9(2), 209–228 (1963)
Cook, W., Fonlupt, J., Schrijver, A.: An integer analogue of Caratheodory’s theorem. J. Comb. Theory, Ser. B 40(1), 63–70 (1986)
De Loera, J., Hemmecke, R., Köppe, M.: Algebraic and Geometric Ideas in the Theory of Discrete Optimization. MOS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics (2013)
Edmonds, J., Giles, R.: Total dual integrality of linear inequality systems. In: Progress in Combinatorial Optimization, pp. 117–129. Elsevier (1984)
Giles, F.R., Pulleyblank, W.R.: Total dual integrality and integer polyhedra. Linear Algebra Appl. 25, 191–196 (1979)
Kaveh, K., Khovanskii, A.G.: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. (2) 176(2), 925–978 (2012)
Ko, C.: On the decomposition of quadratic forms in six variables (dedicated to professor LJ Mordell on his fiftieth birthday). Acta Arith 3(1), 64–78 (1939)
Letchford, A.N., Sørensen, M.M.: Binary positive semidefinite matrices and associated integer polytopes. Math. Program. 131(1–2), 253–271 (2012)
de Meijer, F., Sotirov, R.: The Chátal-Gomory procedure for integer SDPs with applications in combinatorial optimization. Math. Program. (2024)
de Meijer, F., Sotirov, R.: On integrality in semidefinite programming for discrete optimization. SIAM J. Optim. 34(1), 1071–1096 (2024)
Mordell, L.J.: The representation of a definite quadratic form as a sum of two others. Ann. Math. 38(4), 751 (1937)
Schrijver, A.: Theory of Linear and Integer Programming. Wiley Series in Discrete Mathematics & Optimization. Wiley, Hoboken (1998)
Schürmann, A.: Computational Geometry of Positive Definite Quadratic Forms: Polyhedral Reduction Theories, Algorithms, and Applications, vol. 48. American Mathematical Society, Providence (2009)
Sebö, A.: Hilbert bases, Caratheodory’s theorem and combinatorial optimization. In: Proceedings of the 1st Integer Programming and Combinatorial Optimization Conference, pp. 431–455 (1990)
Trott, S.M.: A pair of generators for the unimodular group. Can. Math. Bull. 5(3), 245–252 (1962)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
De Loera, J.A., Marsters, B., Xu, L., Zhang, S. (2024). Integer Points in Arbitrary Convex Cones: The Case of the PSD and SOC Cones. In: Vygen, J., Byrka, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2024. Lecture Notes in Computer Science, vol 14679. Springer, Cham. https://doi.org/10.1007/978-3-031-59835-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-59835-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-59834-0
Online ISBN: 978-3-031-59835-7
eBook Packages: Computer ScienceComputer Science (R0)