Skip to main content

Enhancing Social Media Profile Authenticity Detection: A Bio-Inspired Algorithm Approach

  • Conference paper
  • First Online:
Machine Learning for Networking (MLN 2023)

Abstract

In the contemporary digital landscape, the pervasive and far-reaching impact of online social networks is indisputable. Prominent platforms such as Instagram, Facebook, and Twitter frequently grapple with the persistent challenge of distinguishing between registered profiles and genuinely engaged users, resulting in a noticeable surge in the prevalence of counterfeit or dormant accounts. This situation underscores the compelling necessity to accurately differentiate between authentic and misleading user profiles. The primary objective of this investigation is to introduce an innovative approach to profile validation. This unique method astutely leverages state-of-the-art bio-inspired algorithms while circumventing traditional machine learning techniques. The empirical results are notably convincing, consistently achieving a high level of accuracy in classification tests conducted on the provided datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://urlz.fr/o7Zj.

References

  1. Abdulkareem, N.M., Abdulazeez, A.M., Zeebaree, D.Q., Hasan, D.A.: COVID-19 world vaccination progress using machine learning classification algorithms. Qubahan Acad. J. 1(2), 100–105 (2021)

    Article  Google Scholar 

  2. Albayati, M., Altamimi, A.: MDFP: a machine learning model for detecting fake Facebook profiles using supervised and unsupervised mining techniques. Int. J. Simul.: Syst. Sci. Technol. 20(1), 1–10 (2019)

    Google Scholar 

  3. Azizi, M., Talatahari, S., Gandomi, A.H.: Fire hawk optimizer: a novel metaheuristic algorithm. Artif. Intell. Rev. 56(1), 287–363 (2023)

    Article  Google Scholar 

  4. Bansal, S., Baliyan, N.: Detecting group shilling profiles in recommender systems: a hybrid clustering and grey wolf optimizer technique. In: Singh, D., Garg, V., Deep, K. (eds.) Design and Applications of Nature Inspired Optimization. Women in Engineering and Science, pp. 133–161. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-17929-7_7

    Chapter  Google Scholar 

  5. Bhambulkar, R., Choudhary, S., Pimpalkar, A.: Detecting fake profiles on social networks: a systematic investigation. In: 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1–6. IEEE (2023)

    Google Scholar 

  6. Biau, G., Scornet, E.: A random forest guided tour. Test 25, 197–227 (2016)

    Article  MathSciNet  Google Scholar 

  7. Charbuty, B., Abdulazeez, A.: Classification based on decision tree algorithm for machine learning. J. Appl. Sci. Technol. Trends 2(01), 20–28 (2021)

    Article  Google Scholar 

  8. Deshai, N., Rao, B.B., et al.: Deep learning hybrid approaches to detect fake reviews and ratings. J. Sci. Industr. Res. 82(1), 120–127 (2022)

    Google Scholar 

  9. Dey, A., Reddy, H., Dey, M., Sinha, N., Joy, J.: Detection of fake accounts in Instagram using machine learning. Int. J. Comput. Sci. Inf. Technol. 11(5), 83–90 (2019)

    Google Scholar 

  10. Erşahin, B., Aktaş, Ö., Kılınç, D., Akyol, C.: Twitter fake account detection. In: 2017 International Conference on Computer Science and Engineering (UBMK), pp. 388–392. IEEE (2017)

    Google Scholar 

  11. García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J.M., Herrera, F.: Big data preprocessing: methods and prospects. Big Data Anal. 1(1), 1–22 (2016)

    Article  Google Scholar 

  12. Hays, C., Schutzman, Z., Raghavan, M., Walk, E., Zimmer, P.: Simplistic collection and labeling practices limit the utility of benchmark datasets for twitter bot detection. In: Proceedings of the ACM Web Conference 2023, pp. 3660–3669 (2023)

    Google Scholar 

  13. Mahammed, N., Bennabi, S., Fahsi, M., Klouche, B., Elouali, N., Bouhadra, C.: Fake profiles identification on social networks with bio inspired algorithm. In: 2022 First International Conference on Big Data, IoT, Web Intelligence and Applications (BIWA), pp. 48–52. IEEE (2022)

    Google Scholar 

  14. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview, II. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 7(6), e1219 (2017)

    Google Scholar 

  15. Prasetyaningrum, P.T., Pratama, I., Chandra, A.Y.: Similiarity report: implementation of machine learning to determine the best employees using random forest method (2023)

    Google Scholar 

  16. Saravanan, A., Venugopal, V.: Detection and verification of cloned profiles in online social networks using MapReduce based clustering and classification. Int. J. Intell. Syst. Appl. Eng. 11(1), 195–207 (2023)

    Google Scholar 

  17. Shamseddine, J., Malli, M., Hazimeh, H.: Survey on fake accounts detection algorithms on online social networks. In: Daimi, K., Al Sadoon, A. (eds.) ICR 2022. AISC, vol. 1431, pp. 375–380. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14054-9_35

    Chapter  Google Scholar 

  18. Shi, S., et al.: MGTAB: a multi-relational graph-based twitter account detection benchmark. arXiv preprint arXiv:2301.01123 (2023)

  19. Sinaga, K.P., Yang, M.S.: Unsupervised k-means clustering algorithm. IEEE Access 8, 80716–80727 (2020)

    Article  Google Scholar 

  20. Tanniru, V., Bhattacharya, T.: Online fake logo detection system (2023)

    Google Scholar 

  21. Tanveer, M., Rajani, T., Rastogi, R., Shao, Y.H., Ganaie, M.: Comprehensive review on twin support vector machines. Ann. Oper. Res. 1–46 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Mahammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahammed, N., Klouche, B., Saidi, I., Khaldi, M., Fahsi, M. (2024). Enhancing Social Media Profile Authenticity Detection: A Bio-Inspired Algorithm Approach. In: Renault, É., Boumerdassi, S., Mühlethaler, P. (eds) Machine Learning for Networking. MLN 2023. Lecture Notes in Computer Science, vol 14525. Springer, Cham. https://doi.org/10.1007/978-3-031-59933-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-59933-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-59932-3

  • Online ISBN: 978-3-031-59933-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics