Abstract
In the contemporary digital landscape, the pervasive and far-reaching impact of online social networks is indisputable. Prominent platforms such as Instagram, Facebook, and Twitter frequently grapple with the persistent challenge of distinguishing between registered profiles and genuinely engaged users, resulting in a noticeable surge in the prevalence of counterfeit or dormant accounts. This situation underscores the compelling necessity to accurately differentiate between authentic and misleading user profiles. The primary objective of this investigation is to introduce an innovative approach to profile validation. This unique method astutely leverages state-of-the-art bio-inspired algorithms while circumventing traditional machine learning techniques. The empirical results are notably convincing, consistently achieving a high level of accuracy in classification tests conducted on the provided datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Abdulkareem, N.M., Abdulazeez, A.M., Zeebaree, D.Q., Hasan, D.A.: COVID-19 world vaccination progress using machine learning classification algorithms. Qubahan Acad. J. 1(2), 100–105 (2021)
Albayati, M., Altamimi, A.: MDFP: a machine learning model for detecting fake Facebook profiles using supervised and unsupervised mining techniques. Int. J. Simul.: Syst. Sci. Technol. 20(1), 1–10 (2019)
Azizi, M., Talatahari, S., Gandomi, A.H.: Fire hawk optimizer: a novel metaheuristic algorithm. Artif. Intell. Rev. 56(1), 287–363 (2023)
Bansal, S., Baliyan, N.: Detecting group shilling profiles in recommender systems: a hybrid clustering and grey wolf optimizer technique. In: Singh, D., Garg, V., Deep, K. (eds.) Design and Applications of Nature Inspired Optimization. Women in Engineering and Science, pp. 133–161. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-17929-7_7
Bhambulkar, R., Choudhary, S., Pimpalkar, A.: Detecting fake profiles on social networks: a systematic investigation. In: 2023 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1–6. IEEE (2023)
Biau, G., Scornet, E.: A random forest guided tour. Test 25, 197–227 (2016)
Charbuty, B., Abdulazeez, A.: Classification based on decision tree algorithm for machine learning. J. Appl. Sci. Technol. Trends 2(01), 20–28 (2021)
Deshai, N., Rao, B.B., et al.: Deep learning hybrid approaches to detect fake reviews and ratings. J. Sci. Industr. Res. 82(1), 120–127 (2022)
Dey, A., Reddy, H., Dey, M., Sinha, N., Joy, J.: Detection of fake accounts in Instagram using machine learning. Int. J. Comput. Sci. Inf. Technol. 11(5), 83–90 (2019)
Erşahin, B., Aktaş, Ö., Kılınç, D., Akyol, C.: Twitter fake account detection. In: 2017 International Conference on Computer Science and Engineering (UBMK), pp. 388–392. IEEE (2017)
García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J.M., Herrera, F.: Big data preprocessing: methods and prospects. Big Data Anal. 1(1), 1–22 (2016)
Hays, C., Schutzman, Z., Raghavan, M., Walk, E., Zimmer, P.: Simplistic collection and labeling practices limit the utility of benchmark datasets for twitter bot detection. In: Proceedings of the ACM Web Conference 2023, pp. 3660–3669 (2023)
Mahammed, N., Bennabi, S., Fahsi, M., Klouche, B., Elouali, N., Bouhadra, C.: Fake profiles identification on social networks with bio inspired algorithm. In: 2022 First International Conference on Big Data, IoT, Web Intelligence and Applications (BIWA), pp. 48–52. IEEE (2022)
Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview, II. Wiley Interdisc. Rev.: Data Min. Knowl. Discov. 7(6), e1219 (2017)
Prasetyaningrum, P.T., Pratama, I., Chandra, A.Y.: Similiarity report: implementation of machine learning to determine the best employees using random forest method (2023)
Saravanan, A., Venugopal, V.: Detection and verification of cloned profiles in online social networks using MapReduce based clustering and classification. Int. J. Intell. Syst. Appl. Eng. 11(1), 195–207 (2023)
Shamseddine, J., Malli, M., Hazimeh, H.: Survey on fake accounts detection algorithms on online social networks. In: Daimi, K., Al Sadoon, A. (eds.) ICR 2022. AISC, vol. 1431, pp. 375–380. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14054-9_35
Shi, S., et al.: MGTAB: a multi-relational graph-based twitter account detection benchmark. arXiv preprint arXiv:2301.01123 (2023)
Sinaga, K.P., Yang, M.S.: Unsupervised k-means clustering algorithm. IEEE Access 8, 80716–80727 (2020)
Tanniru, V., Bhattacharya, T.: Online fake logo detection system (2023)
Tanveer, M., Rajani, T., Rastogi, R., Shao, Y.H., Ganaie, M.: Comprehensive review on twin support vector machines. Ann. Oper. Res. 1–46 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mahammed, N., Klouche, B., Saidi, I., Khaldi, M., Fahsi, M. (2024). Enhancing Social Media Profile Authenticity Detection: A Bio-Inspired Algorithm Approach. In: Renault, É., Boumerdassi, S., Mühlethaler, P. (eds) Machine Learning for Networking. MLN 2023. Lecture Notes in Computer Science, vol 14525. Springer, Cham. https://doi.org/10.1007/978-3-031-59933-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-59933-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-59932-3
Online ISBN: 978-3-031-59933-0
eBook Packages: Computer ScienceComputer Science (R0)