Abstract
Data comics offer an innovative and accessible approach to visualizing abstract data, like source code. However, creating these comics is very challenging, as it requires an artist who can conceive and draw the comic while having a deep knowledge of the abstract data. This work explores the application of state-of-the art generative AI models, specifically GPT-4 and DALL\(\cdot \)E 3, to generate a complete comic using a zero-shot approach with three different prompts. Our experiment focuses on generating comics from Python source code. Through a qualitative evaluation, we observed that chain-of-thought prompting could enhance the quality of the generated comics, showcasing the potential advantages and limitations of current generative AI models in creating comics aimed at software comprehension.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmad, A., Waseem, M., Liang, P., Fahmideh, M., Aktar, M.S., Mikkonen, T.: Towards human-bot collaborative software architecting with ChatGPT. In: Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering. pp. 279–285 (2023)
Bach, B., Kerracher, N., Hall, K.W., Carpendale, S., Kennedy, J., Henry Riche, N.: Telling stories about dynamic networks with graph comics. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 3670–3682 (2016)
Bach, B., Riche, N.H., Carpendale, S., Pfister, H.: The emerging genre of data comics. IEEE Comput. Graphics Appl. 37(3), 6–13 (2017)
Bettin, B., Jarvie-Eggart, M., Steelman, K.S., Wallace, C.: Developing a comic-creation assignment and rubric for teaching and assessing algorithmic concepts. In: 2021 IEEE Frontiers in Education Conference (FIE), pp. 1–5. IEEE (2021)
Chotisarn, N., Merino, L., Zheng, X., Lonapalawong, S., Zhang, T., Xu, M., Chen, W.: A systematic literature review of modern software visualization. J. Visualization 23, 539–558 (2020)
Dang, H., Goller, S., Lehmann, F., Buschek, D.: Choice over control: how users write with large language models using diegetic and non-diegetic prompting. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–17 (2023)
Dehouche, N., Dehouche, K.: What’s in a text-to-image prompt? The potential of stable diffusion in visual arts education. Heliyon (2023)
Fan, Z., Gao, X., Mirchev, M., Roychoudhury, A., Tan, S.H.: Automated repair of programs from large language models. In: 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE), pp. 1469–1481. IEEE (2023)
Farmer, L.S.: Information architecture and the comic arts: knowledge structure and access. In: Web Design and Development: Concepts, Methodologies, Tools, and Applications, pp. 569–588. IGI Global (2016)
Gozalo-Brizuela, R., Garrido-Merchan, E.C.: ChatGPT is not all you need. a state of the art review of large generative AI models. arXiv preprint arXiv:2301.04655 (2023)
Hagberg, A., Schult, D., Swart, P.: NetworkX (2024). https://github.com/networkx/networkx
Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Varoquaux, G., Vaught, T., Millman, J. (eds.) Proceedings of the 7th Python in Science Conference, pp. 11 – 15. Pasadena, CA USA (2008)
He, Y., Cao, S., Shi, Y., Chen, Q., Xu, K., Cao, N.: Leveraging large models for crafting narrative visualization: a survey. arXiv preprint arXiv:2401.14010 (2024)
Heidrich, D., Meinecke, A., Schreiber, A., Byška, J., Jänicke, S., Schmidt, J.: Towards a collaborative experimental environment for graph visualization research in virtual reality. In: EuroVis 2021-Posters (2021)
Heidrich, D., Schreiber, A.: Visualizing source code as comics using generative AI. In: 2023 Working Conference on Software Visualization (VISSOFT), pp. 40–44. IEEE (2023). https://doi.org/10.1109/VISSOFT60811.2023.00014
Heidrich, D., Schreiber, A., Oberdörfer, S.: Towards generating labeled property graphs for comprehending c#-based software projects. In: Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering, pp. 1–4 (2022)
Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: a survey. IEEE Trans. Visual Comput. Graphics 6(1), 24–43 (2000)
Jebb, A.T., Ng, V., Tay, L.: A review of key likert scale development advances: 1995–2019. Front. Psychol. 12 (2021). https://doi.org/10.3389/fpsyg.2021.637547
Jeong, H., Kwon, G., Ye, J.C.: Zero-shot generation of coherent storybook from plain text story using diffusion models. arXiv preprint arXiv:2302.03900 (2023)
Tomihisa, K., Satoru, K.: A general framework for visualizing abstract objects and relations (1991)
Kazemitabaar, M., Hou, X., Henley, A., Ericson, B.J., Weintrop, D., Grossman, T.: How novices use llm-based code generators to solve cs1 coding tasks in a self-paced learning environment. arXiv preprint arXiv:2309.14049 (2023)
Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., Iwasawa, Y.: Large language models are zero-shot reasoners. Adv. Neural. Inf. Process. Syst. 35, 22199–22213 (2022)
Li, R., et al.: Starcoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023)
Liew, A., Mueller, K.: Using large language models to generate engaging captions for data visualizations. arXiv preprint arXiv:2212.14047 (2022)
Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22, 1–55 (1932)
Lin, Y., Xian, X., Shi, Y., Lin, L.: Mirrordiffusion: stabilizing diffusion process in zero-shot image translation by prompts redescription and beyond. IEEE Signal Process. Lett. (2024)
Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G.: Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing. ACM Comput. Surv. 55(9), 1–35 (2023)
Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296(5569), 910–913 (2002)
McIntosh, T.R., Susnjak, T., Liu, T., Watters, P., Halgamuge, M.N.: From google Gemini to OpenAI q* (q-star): a survey of reshaping the generative artificial intelligence (AI) research landscape (2023)
McNicol, S.: The potential of educational comics as a health information medium. Health Inf. Librar. J. 34(1), 20–31 (2017)
Melzi, S., Peñaloza, R., Raganato, A.: Does stable diffusion dream of electric sheep? (2023)
Misiak, M., Schreiber, A., Fuhrmann, A., Zur, S., Seider, D., Nafeie, L.: Islandviz: a tool for visualizing modular software systems in virtual reality. In: 2018 IEEE Working Conference on Software Visualization (VISSOFT), pp. 112–116. IEEE (2018)
OpenAI: GPT-4 technical report. arxiv 2303.08774 2, 13 (2023)
Ozkaya, I.: Application of large language models to software engineering tasks: opportunities, risks, and implications. IEEE Softw. 40(3), 4–8 (2023)
Pavlichenko, N., Ustalov, D.: Best prompts for text-to-image models and how to find them. In: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2067–2071 (2023)
al Qaimari, G., Paton, N.W., Kilgour, A.C.: Visualizing advanced data modelling constructs. Inf. Software Technol. 36(10), 597–605 (1994)
Qin, J., et al.: Diffusiongpt: LLM-driven text-to-image generation system. arXiv preprint arXiv:2401.10061 (2024)
Raquel Navarro-Prieto, J.C.: Mental representation and imagery in program comprehension. In: Annual Workshop of the Psychology of Programming Interest Group (1999)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
Rothwell, E., Cheek-O’Donnell, S., Johnson, E., Wilson, A., Anderson, R.A., Botkin, J.: Exploring the use of a comic for education about expanded carrier screening among a diverse group of mothers. J. Commun. Healthc. 14(3), 252–258 (2021)
Schäfer, M., Nadi, S., Eghbali, A., Tip, F.: An empirical evaluation of using large language models for automated unit test generation. IEEE Trans. Software Eng. 50, 85–105 (2023)
Schreiber, A., Struminksi, R.: Visualizing the provenance of personal data using comics. Computers 7(1), 12 (2018)
Siregar, H.F., Siregar, Y.H., Melani, M.: Perancangan aplikasi komik hadist berbasis multimedia. (JurTI) Jurnal Teknologi Informasi 2(2), 113–121 (2018)
Sobania, D., Briesch, M., Hanna, C., Petke, J.: An analysis of the automatic bug fixing performance of chatgpt. arXiv preprint arXiv:2301.08653 (2023)
Sporns, O., Zwi, J.D.: The small world of the cerebral cortex. Neuroinformatics 2, 145–162 (2004)
Suh, S.: Codetoon: a new visual programming environment using comics for teaching and learning programming. In: Proceedings of the 53rd ACM Technical Symposium on Computer Science Education V. 2. SIGCSE 2022, New York, NY, USA, p. 1177. Association for Computing Machinery (2022). https://doi.org/10.1145/3478432.3499254
Suh, S., Lamorea, S., Law, E., Zhang-Kennedy, L.: Privacytoon: concept-driven storytelling with creativity support for privacy concepts. In: Designing Interactive Systems Conference, pp. 41–57 (2022)
Suh, S., Latulipe, C., Lee, K.J., Cheng, B., Law, E.: Using comics to introduce and reinforce programming concepts in CS1. In: SIGCSE, pp. 369–375 (2021)
Suh, S., Lee, M., Xia, G., law, E.: Coding strip: a pedagogical tool for teaching and learning programming concepts through comics. In: 2020 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 1–10 (2020). https://doi.org/10.1109/VL/HCC50065.2020.9127262
Theis, S., Jentzsch, S., Deligiannaki, F., Berro, C., Raulf, A.P., Bruder, C.: Requirements for explainability and acceptance of artificial intelligence in collaborative work. In: Degen, H., Ntoa, S. (eds.) HCII 2023. LNCS, vol. 14050, pp. 355–380. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35891-3_22
Touvron, H., et al.: Llama: open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023)
Wang, Z., Romat, H., Chevalier, F., Riche, N.H., Murray-Rust, D., Bach, B.: Interactive data comics. IEEE Trans. Visual Comput. Graphics 28(1), 944–954 (2022). https://doi.org/10.1109/TVCG.2021.3114849
Wei, J., et al.: Emergent abilities of large language models. arXiv preprint arXiv:2206.07682 (2022)
Wong, M.F., Guo, S., Hang, C.N., Ho, S.W., Tan, C.W.: Natural language generation and understanding of big code for AI-assisted programming: a review. Entropy 25(6), 888 (2023)
Yu, H.: Conceptual art or readable contract: the use of comics in technical communication. Tech. Commun. Q. 29(3), 222–239 (2020)
Zhao, Z., Wallace, E., Feng, S., Klein, D., Singh, S.: Calibrate before use: improving few-shot performance of language models. In: International Conference on Machine Learning, pp. 12697–12706. PMLR (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Heidrich, D., Schreiber, A., Theis, S. (2024). Generative Artificial Intelligence for the Visualization of Source Code as Comics. In: Mori, H., Asahi, Y. (eds) Human Interface and the Management of Information. HCII 2024. Lecture Notes in Computer Science, vol 14690. Springer, Cham. https://doi.org/10.1007/978-3-031-60114-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-60114-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60113-2
Online ISBN: 978-3-031-60114-9
eBook Packages: Computer ScienceComputer Science (R0)