Abstract
Data science has emerged as a critical field for organizations seeking to harness the power of big data to inform strategic decisions and gain a competitive edge. However, the demand for data scientists far exceeds the currently available pool of qualified candidates, making it a significant challenge for organizations to hire and train the right talent. The discipline of data science is inherently multi-faceted, requiring a diverse set of technical and non-technical skills that can be rare to find in individuals or teams. In response to this challenge, our study has developed a comprehensive framework, drawing insights from extensive literature, identifying and underscoring the enduring relevance of 130 distinct competencies for the future data scientist. This framework stands out for its depth and breadth, offering a more holistic perspective than existing models found in the literature. By embracing this framework, organizations can craft more effective recruitment strategies, enhance the professional growth of their data science teams, and ultimately strengthen their capacity to leverage data for making informed and strategic decisions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Haneke, U., Trahasch, S., Zimmer, M., Felden, C.: Data Science: Grundlagen, Architekturen und Anwendungen. dpunkt. verlag (2021)
Hattingh, M., Marshall, L., Holmner, M., Naidoo, R.: Data science competency in organisations: a systematic review and unified model. In: Proceedings of the South African Institute of Computer Scientists and Information Technologists 2019, pp. 1–8 (2019). https://doi.org/10.1145/3351108.3351110
Lovaglio, P.G., Cesarini, M., Mercorio, F., Mezzanzanica, M.: Skills in demand for ICT and statistical occupations: evidence from web-based job vacancies. Stat. Anal. Data Mining ASA Data Sci. J. 11(2), 78–91 (2018). https://doi.org/10.1002/sam.11372
da Silveira, C.C., Marcolin, C.B., da Silva, M., Domingos, J.C.: What is a data scientist? analysis of core soft and technical competencies in job postings. Revista Inovação, Projetos e Tecnologias 8(1), 25–39 (2020). https://doi.org/10.5585/iptec.v8i1.17263
Wu, D., Lv, S., Xu, H.: An analysis on competency of human-centered data science employment. Proc. Assoc. Inf. Sci. Technol. 57(1), e219 (2020). https://doi.org/10.1002/pra2.219
Prifti, L., Knigge, M., Kienegger, H., Krcmar, H.: A competency model for Industrie 4.0 employees. In: Proceedings der 13. Internationalen Tagung Wirtschaftsinformatik (WI 2017), pp. 46–60 (2017)
McCartney, S., Murphy, C., Mccarthy, J.: 21st century HR: a competency model for the emerging role of HR Analysts. Pers. Rev. 50(6), 1495–1513 (2021). https://doi.org/10.1108/PR-12-2019-0670
Provost, F., Fawcett, T.: Data science and its relationship to big data and data-driven decision making. Big Data 1(1), 51–59 (2013). https://doi.org/10.1089/big.2013.1508
De Mauro, A., Greco, M., Grimaldi, M., Nobili, G., et al.: Beyond data scientists: a review of big data skills and job families. In: Proceedings of IFKAD, pp. 1844–1857 (2016). https://hdl.handle.net/11580/55712
Lyon, L.: Dealing with data: roles, rights, responsibilities, and relationships consultancy report (2007)
Nosarka, N.B.: Data scientist: using a competency-based approach to explore an emerging role. PhD thesis (2018). https://hdl.handle.net/10539/27155
Stadelmann, T., Stockinger, K., Bürki, G.H., Braschler, M.: Data scientists. In: Applied Data Science: Lessons Learned for the Data-Driven Business, pp. 31–45 (2019). https://doi.org/10.1007/978-3-030-11821-1_3
Smaldone, F., Ippolito, A., Lagger, J., Pellicano, M.: Employability skills: profiling data scientists in the digital labour market. Eur. Manag. J. 40(5), 671–684 (2022). https://doi.org/10.1016/j.emj.2022.05.005
Saltz, J.S., Grady, N.W.: The ambiguity of data science team roles and the need for a data science workforce framework. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 2355–2361. IEEE (2017). https://doi.org/10.1109/BigData.2017.8258190
Jerina Jean Ecleo and Adrian Galido: Surveying linkedin profiles of data scientists: the case of the Philippines. Procedia Comput. Sci. 124, 53–60 (2017). https://doi.org/10.1016/j.procs.2017.12.129
Song, I.Y., Zhu, Y.: Big data and data science: what should we teach? Exp. Syst. 33(4), 364–373 (2016). https://doi.org/10.1111/exsy.12130
Della Volpe, M., Esposito, F.: How universities fill the talent gap: the data scientist in the Italian case. Afr. J. Bus. Manag. 14(2), 53–64 (2020). https://doi.org/10.5897/AJBM2019.8885
Schwab-McCoy, A., Baker, C.M., Gasper, R.E.: Data science in 2020: computing, curricula, and challenges for the next 10 years. J. Stat. Data Sci. Educ. 29(sup1), S40–S50 (2021). https://doi.org/10.1080/10691898.2020.1851159
Stanton, W.W., Stanton, A.D.: Helping business Entry-level Requirements needed for a career in analytics: a comprehensive industry assessment of entry-level requirements. Decis. Sci. J. Innov. Educ. 18(1), 138–165 (2020). https://doi.org/10.1111/dsji.12199
Kim, J.Y., Lee, C.K.: An empirical analysis of requirements for data scientists using online job postings. Int. J. Softw. Eng. Appl. 10(4), 161–172 (2016)
Kim, M., Zimmermann, T., DeLine, R., Begel, A.: The emerging role of data scientists on software development teams. In: Proceedings of the 38th International Conference on Software Engineering, pp. 96–107 (2016). https://doi.org/10.1145/2884781.2884783
Ehlers, U.D.: Future skills: the future of learning and higher education. BoD–Books on Demand (2020). https://www.learntechlib.org/p/208249/
Pedro, F., Subosa, M., Rivas, A., Valverde, P.: Artificial intelligence in education: challenges and opportunities for sustainable development (2019). https://hdl.handle.net/20.500.12799/6533
Wang, D., et al.: Human-AI collaboration in data science: Exploring data scientists’ perceptions of automated AI. In: Proceedings of the ACM on Human-Computer Interaction CSCW , vol. 3, pp. 1–24(2019). https://doi.org/10.1145/3359313
McClelland, D.C.: Testing for competence rather than for “intelligence’’. Am. Psychol. 28(1), 1 (1973)
Nascimbeni, F., et al.: The Opengame competencies framework: an attempt to map open education attitudes, knowledge, and skills. In: EDEN Conference Proceedings, vol. 1, pp. 105–112 (2020)
Staškeviča, A., et al.: The importance of competency model development. Acta Oeconomica Pragensia 27(2), 62–71 (2019). https://doi.org/10.18267/j.aop.622
Skhvediani, A., Sosnovskikh, S., Rudskaia, I., Kudryavtseva, T.: Identification and comparative analysis of the skills structure of the data analyst profession in Russia. J. Educ. Bus. 97(5), 295–304 (2022). https://doi.org/10.1080/08832323.2021.1937018
Binkley, M., et al.: Defining twenty-first century skills. In: Assessment and Teaching of 21st Century Skills, pp. 17–66 (2012). https://doi.org/10.1007/978-94-007-2324-5
Boyatzis, R.E.: The Competent Manager: A Model for Effective Performance. John Wiley & Sons, Hoboken (1991)
Mike, K., Hazzan, O.: What is data science? Commun. ACM 66(2), 12–13 (2023). https://doi.org/10.1145/3575663
Sanders, N.: A balanced perspective on prediction and inference for data science in industry. Harvard Data Sci. Rev. 1(1), 1–28 (2019). https://doi.org/10.1162/99608f92.644ef4a4
Meyer, M.A.: Healthcare data scientist qualifications, skills, and job focus: a content analysis of job postings. J. Am. Med. Inf. Assoc. 26(5), 383–391 (2019). https://doi.org/10.1093/jamia/ocy181
Shirani, A.: Identifying data science and analytics competencies based on industry demands. Issues Inf. Syst. 17(4), 137–144 (2016). https://doi.org/10.48009/4_iis_2016_137-144
Ghasemaghaei, M., Ebrahimi, S., Hassanein, K.: Data analytics competency for improving firm decision making performance. J. Strat. Inf. Syst. 27(1), 101–113 (2018). https://doi.org/10.1016/j.jsis.2017.10.001
Kansal, J., Singhal, S.: Development of a competency model for enhancing the organisational effectiveness in a knowledge-based organisation. Int. J. Indian Cult. Bus. Manag. 16(3), 287–301 (2018). https://doi.org/10.1504/IJICBM.2018.090909
Murawski, M., Bick, M.: Digital competences of the workforce-a research topic? Bus. Process Manag. J. 23(3), 721–734 (2017). https://doi.org/10.1108/BPMJ-06-2016-0126
Persaud, A.: Key competencies for big data analytics professions: a multimethod study. Inf. Technol. People 34(1), 178–203 (2021). https://doi.org/10.1108/ITP-06-2019-0290
Bonesso, S., Gerli, F., Bruni, E.: The emotional and social side of analytics professionals: an exploratory study of the behavioral profile of data scientists and data analysts. Int. J. Manpower 43(9), 19–41 (2022). https://doi.org/10.1108/IJM-07-2020-0342
Erpenbeck, J., Heyse, V.: Kompetenzmodelle und personalentwicklung. In: Jahrbuch Personalentwicklung, pp. 71–80 (2008)
Suhairom, N., Musta’amal, A.H., Amin, N.F.M., Johari, N.K.A.: The development of competency model and instrument for competency measurement: the research methods. Procedia-Soc. Behav. Sci. 152, 1300–1308 (2014). https://doi.org/10.1016/j.sbspro.2014.09.367
Mina, M.A.E., Barzola, D.D.P.G.: Data scientist: a systematic review of the literature. In: International Conference on Technology Trends, pp. 476–487. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-05532-5_35
Surbakti, F.P.S., Wang, W., Indulska, M., Sadiq, S.: Factors influencing effective use of big data: a research framework. Inf. Manag. 57(1), 103146 (2020). https://doi.org/10.1016/j.im.2019.02.001
Joshua, E., Zarefard, M., Marsden, N.: Investigating skill requirements and gender bias in job openings for HCI professionals across the USA, Australia, Germany, India, and South Africa. In: 2023 9th International HCI and UX Conference in Indonesia (CHIuXiD), pp. 1–6. IEEEXplore (2023). In press
Vijayarani, S., Janani, R.: Text mining: open source tokenization tools-an analysis. Adv. Comput. Intell. Int. J. (ACII) 3(1), 37–47 (2016). https://doi.org/10.5121/acii.2016.3104
De Mauro, A., Greco, M., Grimaldi, M., Ritala, P.: Human resources for big data professions: a systematic classification of job roles and required skill sets. Inf. Process. Manag. 54(5), 807–817 (2018). https://doi.org/10.1016/j.ipm.2017.05.004
Chen, T., Liu, Y.X., Huang, L.: ImageGP: an easy-to-use data visualization web server for scientific researchers. Imeta 1(1), e5 (2022). https://doi.org/10.1002/imt2.5
Le Deist, F.D., Winterton, J.: What is competence? Human Res. Dev. Int. 8(1), 27–46 (2005). https://doi.org/10.1080/1367886042000338227
Brown, T., De Neve, G.: Skills, training and development: an introduction to the social life of skills in the global south (2023). https://doi.org/10.1080/01436597.2023.2219615
Chen, C., Jiang, H.: Important skills for data scientists in china: two Delphi studies. J. Comput. Inf. Syst. (2018). https://doi.org/10.1080/08874417.2018.1472047
Fatih Gurcan and Nergiz Ercil Cagiltay: Big data software engineering: analysis of knowledge domains and skill sets using LDA-based topic modeling. IEEE Access 7, 82541–82552 (2019). https://doi.org/10.1109/ACCESS.2019.2924075
Davies, A., Mueller, J., Moulton, G.: Core competencies for clinical informaticians: a systematic review. Int. J. Med. Inf. 141, 104237 (2020). https://doi.org/10.1016/j.ijmedinf.2020.104237
Bukhari, D.: Data science curriculum: current scenario. Int. J. Data Min. Knowl. Manag. Process (IJDKP) 10 (2020). https://doi.org/10.5121/ijdkp.2020.10301
Sabaityte, J., Davidaviciene, V., Karpoviciute, R.: Learning skills for enhancing the use of big data. World J. Educ. Technol. Curr. Issues 12(1), 23–36 (2020). https://doi.org/10.18844/wjet.v12i1.4438
Lnenicka, M., Kopackova, H., Machova, R., Komarkova, J.: Big and open linked data analytics: a study on changing roles and skills in the higher educational process. Int. J. Educ. Technol. High. Educ. 17, 1–30 (2020). https://doi.org/10.1186/s41239-020-00208-z
Li, G., Yuan, C., Kamarthi, S., Moghaddam, M., Jin, X.: Data science skills and domain knowledge requirements in the manufacturing industry: a gap analysis. J. Manuf. Syst. 60, 692–706 (2021). https://doi.org/10.1016/j.jmsy.2021.07.007
Dinh, L.T.N., Karmakar, G., Kamruzzaman, J.: A survey on context awareness in big data analytics for business applications. Knowl. Inf. Syst. 62, 3387–3415 (2020)
Zarefard, M., Jeong, D.Y.: The Effect of Entrepreneurial Leadership Competencies in Iranian ICTs, p. 128. LAP Lambert Academic Publishing (2019). ISBN: 978-6134981484
Finegold, D., Notabartolo, A.S.: 21st century competencies and their impact: an interdisciplinary literature review. Transform. US Workforce Dev. Syst. 19, 19–56 (2010)
Škrinjarić, B.: Competence-based approaches in organizational and individual context. Human. Soc. Sci. Commun. 9(1), 1–12 (2022). https://doi.org/10.1057/s41599-022-01047-1
Acknowledgments
This work has been partially funded by the German Federal Institute for Vocational Education and Training (Bundesinstitut für Berufsbildung BIBB) under Grant Number 21INVI1802 as part of the project ‘KI-gestütztes Matching individueller und arbeitsmarktbezogener Anforderungen für die berufliche Weiterbildung. Teilvorhaben: Nutzer*innenzentrierte Anforderungsanalyse, Konzeptualisierung und Modellierung des Lern- und Matching-Angebots unter Berücksichtigung von Gender- und Diversity-Aspekten’. The responsibility for all content supplied lies with the authors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zarefard, M., Marsden, N. (2024). The Essential Competencies of Data Scientists: A Framework for Hiring and Training. In: Mori, H., Asahi, Y. (eds) Human Interface and the Management of Information. HCII 2024. Lecture Notes in Computer Science, vol 14691. Springer, Cham. https://doi.org/10.1007/978-3-031-60125-5_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-60125-5_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60124-8
Online ISBN: 978-3-031-60125-5
eBook Packages: Computer ScienceComputer Science (R0)