Skip to main content

Comprehensive Analysis of Feature Extraction Methods for Emotion Recognition on Motor Imagery from Multichannel EEG Recordings

  • Conference paper
  • First Online:
Good Practices and New Perspectives in Information Systems and Technologies (WorldCIST 2024)

Abstract

Electroencephalogram (EEG) related analyses have a vast extent of enquiries, preliminary from Brain-Computer Interfaces (BCI) on motor imagery tasks, neurotechnology, human-computer interaction, clinical and medical applications, sleep research, as well as the neural basis of emotional recognition and behavioural responses. This study purposely investigates the application of feature extraction methods from the emotion recognition arena against the motor imagery arena, using the electroencephalogram (EEG) data from the BCI Competition IV. As the same methods are used in both fields, binary classification has been embraced, emotion recognition’s valence and arousal, using its equivalent motor imageries of left and right classes. Essentially, six EEG feature extraction methods were used in the classification accuracy process, including statistical features, wavelet analysis, higher-order spectra (HOS), Hjorth, fractal dimension (Katz, Higuchi, Petrosian) and three-dimensional combination of fractal, wavelet and Hjorth. Further, the classifier performance methods were the Gaussian radial basis function RBF SVM (GSVM) and the regression tree (CART). Remarkably, the statistical method has better accuracy than the other feature sets, precisely the fractal dimension, which was the highest considering the emotion recognition span. Also, GSVM generally has better accuracy on the BCI IV dataset than CART. By contemplating the novel outcome notices, we can deduce that in the methods used in emotion recognition when applied to motor imagery, unique results are obtained, feature-wise and classifier-wise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yuvaraj, R., Thagavel, P., Thomas, J., Fogarty, J., Ali, F.: Comprehensive analysis of feature extraction methods for emotion recognition from multichannel EEG recordings. Sensors 23(2), 915 (2023). https://doi.org/10.3390/s23020915

    Article  Google Scholar 

  2. Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M.: A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 3(1), 42–55 (2012)

    Article  Google Scholar 

  3. Koelstra, S., et al.: DEAP: a database for emotion analysis using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)

    Article  Google Scholar 

  4. Zheng, W.L., Lu, B.L.: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans. Auton. Ment. Dev. 7(3), 162–175 (2015)

    Article  Google Scholar 

  5. Miranda-Correa, J.A., Abadi, M.K., Sebe, N., Patras, I.: AMIGOS: a dataset for affect, personality, and mood research on individuals and groups. IEEE Trans. Affect. Comput. 12(4), 479–493 (2017)

    Google Scholar 

  6. Katsigiannis, S., Ramzan, N.: DREAMER: a database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE J. Biomed. Health Inform. 22(1), 98–107 (2018)

    Article  Google Scholar 

  7. Jenke, R., Peer, A., Buss, M.: Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comput. 5(3), 327–339 (2014)

    Article  Google Scholar 

  8. Liu, Y., Sourina, O.: Real-time subject-dependent EEG-based emotion recognition algorithm. In: Gavrilova, M.L., Kenneth Tan, C.J., Mao, X., Hong, L. (eds.) Transactions on Computational Science XXIII: Special Issue on Cyberworlds, pp. 199–223. Springer Berlin Heidelberg, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43790-2_11

    Chapter  Google Scholar 

  9. Yuvaraj, R., et al.: Optimal set of EEG features for emotional state classification and trajectory visualization in Parkinson’s disease. Int. J. Psychophysiol. 94(3), 482–495 (2014)

    Article  Google Scholar 

  10. Nawaz, R., Cheah, K.H., Nisar, H., Yap, V.V.: Comparison of different feature extraction methods for EEG-based emotion recognition. Biocybern. Biomed. Eng. 40(4), 910–926 (2020)

    Article  Google Scholar 

  11. Liu, J., Meng, H., Li, M., Zhang, F., Qin, R., Nandi, A.K.: Emotion detection from EEG recordings based on supervised and unsupervised dimension reduction. Concurrency Comput. Pract. Exp. 30, e4466 (2018)

    Article  Google Scholar 

  12. Katz, M.J.: Fractals and the analysis of waveforms. Comput. Biol. Med. 18(3), 145–156 (1998)

    Article  Google Scholar 

  13. Hatamikia, S., Nasrabadi, A.M.: Recognition of emotional states induced by music videos based on nonlinear feature extraction and SOM classification. In: Proceedings of the 21st Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, pp. 333–337 (2014)

    Google Scholar 

  14. Higuchi, T.: Approach to an irregular time series on the basis of the fractal theory. Physica D 31(1–2), 277–283 (1988). https://doi.org/10.1016/0167-2789(88)90081-4

    Article  MathSciNet  Google Scholar 

  15. Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front. Neurosci. 6, 39 (2012). https://doi.org/10.3389/fnins.2012.00039

    Article  Google Scholar 

  16. Schlögl, A., et al.: BCI Competition 2008 – Graz data set A. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology (2008). http://www.bbci.de/competition/iv/

  17. Wang, X.W., Nie, D., Lu, B.L.: Emotional state classification from EEG data using machine learning approach. Neurocomputing 129, 94–106 (2014)

    Article  Google Scholar 

  18. Hjorth, B.: EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29(3), 306–310 (1970)

    Article  Google Scholar 

  19. Hjorth, B.: The physical significance of time domain descriptors in EEG analysis. Electroencephalogr. Clin. Neurophysiol. 34(3), 321–325 (1973)

    Article  Google Scholar 

  20. Hosseini, S.A.: Classification of brain activity in emotional states using HOS analysis. Int. J. Image Graph. Sig. Process. 4(1), 21 (2012)

    Google Scholar 

  21. Hirano, K., Nishimura, S., Mitra, S.: Design of digital notch filters. IEEE Trans. Commun. 22(7), 964–970 (1974)

    Article  Google Scholar 

  22. Hussin, S.F., Birasamy, G., Hamid, Z.: Design of butterworth band-pass filter. Politeknik Kolej Komuniti J. Eng. Technol. 1(1) (2016)

    Google Scholar 

  23. Youssef, A.: Image downsampling and upsampling methods. National Institute of Standards and Technology (1999)

    Google Scholar 

  24. Lemos, M.S., Fisch, B.J.: The weighted average reference montage. Electroencephalogr. Clin. Neurophysiol. 79(5), 361–370 (1991)

    Article  Google Scholar 

  25. Yang, J., et al.: Parameter selection of Gaussian kernel SVM based on local density of training set. Inverse Prob. Sci. Eng. 29(4), 536–548 (2021)

    Article  MathSciNet  Google Scholar 

  26. Azuaje, F.: Witten IH, Frank E: data mining: practical machine learning tools and techniques. Biomed. Eng. Online 5, 51 (2006)

    Google Scholar 

  27. Diamantidis, N.A., Karlis, D., Giakoumakis, E.A.: Unsupervised stratification of cross-validation for accuracy estimation. Artif. Intell. 116(1–2), 1–16 (2000)

    Article  MathSciNet  Google Scholar 

  28. Nawaz, R., Cheah, K.H., Nisar, H., Yap, V.V.: Comparison of different feature extraction methods for EEG-based emotion recognition. Biocybern. Biomed. Eng. 40(3), 910–926 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr F. Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohamed, A.F., Jusas, V. (2024). Comprehensive Analysis of Feature Extraction Methods for Emotion Recognition on Motor Imagery from Multichannel EEG Recordings. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Poniszewska-Marańda, A. (eds) Good Practices and New Perspectives in Information Systems and Technologies. WorldCIST 2024. Lecture Notes in Networks and Systems, vol 986. Springer, Cham. https://doi.org/10.1007/978-3-031-60218-4_20

Download citation

Publish with us

Policies and ethics