Skip to main content

Integrating Explainable AI: Breakthroughs in Medical Diagnosis and Surgery

  • Conference paper
  • First Online:
Good Practices and New Perspectives in Information Systems and Technologies (WorldCIST 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 986))

Included in the following conference series:

  • 123 Accesses

Abstract

The challenge of explaining the results generated by artificial intelligence (AI) is a significant obstacle to their widespread acceptance, which is why increased attention has been paid to the explainability in AI (XAI) in recent years. Given its impact on the medical sector, the survey seeks to demonstrate the important role of XAI in ensuring the reliability and accountability of AI in the domains of diagnosis and surgery. Therefore, we conduct an in-depth look at the applications and challenges of XAI in these areas by reviewing articles published between 2022 and 2023. The survey aims to explore the categorization of XAI techniques, establish their taxonomy, address trade-offs between model performance and interpretability and emphasize the importance of achieving a balance in practical applications. The findings of this study confirm the potential of XAI in medicine as a promising avenue for exploration, providing guidance for the development of medical XAI applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The initial, slow phase of ventricular repolarization.

References

  1. Alloghani, M., Al-Jumeily, D., Aljaaf, A.J., Khalaf, M., Mustafina, J., Tan, S.Y.: The application of artificial intelligence technology in healthcare: a systematic review. In: Khalaf, M.I., Al-Jumeily, D., Lisitsa, A. (eds.) ACRIT 2019. CCIS, vol. 1174, pp. 248–261. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38752-5_20

    Chapter  Google Scholar 

  2. Jacovi, A., Marasović, A., Miller, T., Goldberg, Y.: Formalizing trust in artificial intelligence: prerequisites, causes and goals of human trust in AI. In: FAccT 2021: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (2020)

    Google Scholar 

  3. Owens, E., Sheehan, B., Mullins, M., Cunneen, M., Ressel, J., Castignani, G.: Explainable artificial intelligence (XAI) in insurance. Risks 10(12), 230 (2022). https://doi.org/10.3390/risks10120230

    Article  Google Scholar 

  4. Zhang, C.A., Cho, S., Vasarhelyi, M.: Explainable artificial intelligence (XAI) in auditing. Int. J. Acc. Inf. Syst. 46, 100572 (2022). https://doi.org/10.1016/j.accinf.2022.100572

    Article  Google Scholar 

  5. van der Velden, B.H.M., Kuijf, H.J., Gilhuijs, K.G.A., Viergever, M.A.: Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 79(102470), 102470 (2022). https://doi.org/10.1016/j.media.2022.102470

    Article  Google Scholar 

  6. Zhang, Y., Weng, Y., Lund, J.: Applications of explainable artificial intelligence in diagnosis and surgery. Diagnostics (Basel) 12(2), 237 (2022). https://doi.org/10.3390/diagnostics12020237

    Article  Google Scholar 

  7. Pham, H.H., Nguyen, H.Q., Nguyen, H.T., Le, L.T., Khanh, L.: An accurate and explainable deep learning system improves interobserver agreement in the interpretation of chest radiograph. IEEE Access 10, 104512–104531 (2022). https://doi.org/10.1109/ACCESS.2022.3210468

    Article  Google Scholar 

  8. Vishwarupe, V., Joshi, P.M., Mathias, N., Maheshwari, S., Mhaisalkar, S., Pawar, V.: Explainable AI and interpretable machine learning: a case study in perspective. Procedia Comput. Sci. 204, 869–876 (2022). https://doi.org/10.1016/j.procs.2022.08.105

    Article  Google Scholar 

  9. Troncoso-García, A.R., Martínez-Ballesteros, M., Martínez-Álvarez, F., Troncoso, A.: Explainable machine learning for sleep apnea prediction. Procedia Comput. Sci. 207, 2930–2939 (2022). https://doi.org/10.1016/j.procs.2022.09.351

    Article  Google Scholar 

  10. Nigar, N., Umar, M., Shahzad, M.K., Islam, S., Abalo, D.: A deep learning approach based on explainable artificial intelligence for skin lesion classification. IEEE Access 10, 113715–113725 (2022). https://doi.org/10.1109/ACCESS.2022.3217217

    Article  Google Scholar 

  11. Civit-Masot, J., Bañuls-Beaterio, A., Domínguez-Morales, M., Rivas-Pérez, M., Muñoz-Saavedra, L., Rodríguez Corral, J.M.: Non-small cell lung cancer diagnosis aid with histopathological images using explainable deep learning techniques. Comput. Methods Programs Biomed. 226, 107108 (2022). https://doi.org/10.1016/j.cmpb.2022.107108

    Article  Google Scholar 

  12. Loh, H.W., et al.: Deep neural network technique for automated detection of ADHD and CD using ECG signal. Comput. Methods Programs Biomed. 241(107775), 107775 (2023). https://doi.org/10.1016/j.cmpb.2023.107775

    Article  Google Scholar 

  13. Zou, L., et al.: Ensemble image explainable AI (XAI) algorithm for severe community-acquired pneumonia and COVID-19 respiratory infections. IEEE Trans. Artif. Intell. 4(2), 242–254 (2023). https://doi.org/10.1109/TAI.2022.3153754

    Article  Google Scholar 

  14. Khater, T., et al.: An explainable artificial intelligence model for the classification of breast cancer. IEEE Access 1 (2023). https://doi.org/10.1109/ACCESS.2023.3308446

  15. Amado-Caballero, P., Casaseca-de-la-Higuera, P., Alberola-López, S., Andrés-de-Llano, J.M., López-Villalobos, J.A., Alberola-López, C.: Insight into ADHD diagnosis with deep learning on actimetry: quantitative interpretation of occlusion maps in age and gender subgroups. Artif. Intell. Med. 143(102630), 102630 (2023). https://doi.org/10.1016/j.artmed.2023.102630

    Article  Google Scholar 

  16. Yilmaz, R., Yagin, F.H., Raza, A., Colak, C., Akinci, T.C.: Assessment of hematological predictors via explainable artificial intelligence in the prediction of acute myocardial infarction. IEEE Access 11, 108591–108602 (2023). https://doi.org/10.1109/ACCESS.2023.3321509

    Article  Google Scholar 

  17. Saravanan, S., Ramkumar, K., Narasimhan, K., Vairavasundaram, S., Kotecha, K., Abraham, A.: Explainable artificial intelligence (EXAI) models for early prediction of Parkinson’s disease based on spiral and wave drawings. IEEE Access 11, 68366–68378 (2023). https://doi.org/10.1109/ACCESS.2023.3291406

    Article  Google Scholar 

  18. Camacho, M., et al.: Explainable classification of Parkinson’s disease using deep learning trained on a large multi-center database of T1-weighted MRI datasets. NeuroImage Clin. 38(103405), 103405 (2023). https://doi.org/10.1016/j.nicl.2023.103405

    Article  Google Scholar 

  19. Sheu, R.-K., Pardeshi, M.S., Pai, K.-C., Chen, L.-C., Wu, C.-L., Chen, W.-C.: Interpretable classification of pneumonia infection using eXplainable AI (XAI-ICP). IEEE Access 11, 28896–28919 (2023). https://doi.org/10.1109/ACCESS.2023.3255403

    Article  Google Scholar 

  20. Lysdahlgaard, S.: Utilizing heat maps as explainable artificial intelligence for detecting abnormalities on wrist and elbow radiographs. Radiography (Lond.) 29(6), 1132–1138 (2023). https://doi.org/10.1016/j.radi.2023.09.012

    Article  Google Scholar 

  21. Islam, M.K., Rahman, M.M., Ali, M.S., Mahim, S.M., Miah, M.S.: Enhancing lung abnormalities detection and classification using a deep convolutional neural network and GRU with explainable AI: a promising approach for accurate diagnosis. Mach. Learn. Appl. 14(100492), 100492 (2023). https://doi.org/10.1016/j.mlwa.2023.100492

    Article  Google Scholar 

  22. Ramírez-Mena, A., Andrés-León, E., Alvarez-Cubero, M.J., Anguita-Ruiz, A., Martinez-Gonzalez, L.J., Alcala-Fdez, J.: Explainable artificial intelligence to predict and identify prostate cancer tissue by gene expression. Comput. Methods Programs Biomed. 240, 107719 (2023). https://doi.org/10.1016/j.cmpb.2023.107719

    Article  Google Scholar 

  23. Bellantuono, L., et al.: An eXplainable artificial intelligence analysis of Raman spectra for thyroid cancer diagnosis. Sci. Rep. 13(1), 16590 (2023). https://doi.org/10.1038/s41598-023-43856-7

    Article  Google Scholar 

  24. Hossain, M.M., et al.: Cardiovascular disease identification using a hybrid CNN-LSTM model with explainable AI. Inform. Med. Unlocked 42(101370), 101370 (2023). https://doi.org/10.1016/j.imu.2023.101370

    Article  Google Scholar 

  25. Moreno-Sánchez, P.A.: Data-driven early diagnosis of chronic kidney disease: development and evaluation of an explainable AI model. IEEE Access 11, 38359–38369 (2023). https://doi.org/10.1109/ACCESS.2023.3264270

    Article  Google Scholar 

  26. Nayak, T., et al.: Deep learning based detection of monkeypox virus using skin lesion images. Med. Nov. Technol. Devices 18, 100243 (2023). https://doi.org/10.1016/j.medntd.2023.100243

    Article  Google Scholar 

  27. Muscato, F., Corti, A., Gambaro, F.M., Chiappetta, K., Loppini, M., Corino, V.D.A.: Combining deep learning and machine learning for the automatic identification of hip prosthesis failure: development, validation and explainability analysis. Int. J. Med. Inf. 176, 105095 (2023). https://doi.org/10.1016/j.ijmedinf.2023.105095

    Article  Google Scholar 

  28. Varam, D., et al.: Wireless capsule endoscopy image classification: an explainable AI approach. IEEE Access 11, 105262–105280 (2023). https://doi.org/10.1109/ACCESS.2023.3319068

    Article  Google Scholar 

  29. Massafra, R., et al.: Analyzing breast cancer invasive disease event classification through explainable artificial intelligence. Front. Med. 10, 1116354 (2023). https://doi.org/10.3389/fmed.2023.1116354

    Article  Google Scholar 

  30. Nkengue, M.J., Zeng, X., Koehl, L., Tao, X.: X-RCRNet: an explainable deep-learning network for COVID-19 detection using ECG beat signals. Biomed. Signal Process. Control 87(105424), 105424 (2024). https://doi.org/10.1016/j.bspc.2023.105424

    Article  Google Scholar 

  31. Jiménez-García, J., et al.: An explainable deep-learning architecture for pediatric sleep apnea identification from overnight airflow and oximetry signals. Biomed. Signal Process. Control 87(105490), 105490 (2024). https://doi.org/10.1016/j.bspc.2023.105490

    Article  Google Scholar 

  32. Cozma, G.V., Onchis, D., Istin, C., Petrache, I.A.: Explainable machine learning solution for observing optimal surgery timings in thoracic cancer diagnosis. Appl. Sci. (Basel) 12(13), 6506 (2022). https://doi.org/10.3390/app12136506

    Article  Google Scholar 

  33. Tao, S., Ravindranath, R., Wang, S.Y.: Predicting glaucoma progression to surgery with artificial intelligence survival models. Ophthalmol. Sci. 3(4), 100336 (2023). https://doi.org/10.1016/j.xops.2023.100336

    Article  Google Scholar 

  34. To, T., et al.: Deep learning classification of deep ultraviolet fluorescence images toward intra-operative margin assessment in breast cancer. Front. Oncol. 13, 1179025 (2023). https://doi.org/10.3389/fonc.2023.1179025

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Henriques, A., Parola, H., Gonçalves, R., Rodrigues, M. (2024). Integrating Explainable AI: Breakthroughs in Medical Diagnosis and Surgery. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Poniszewska-Marańda, A. (eds) Good Practices and New Perspectives in Information Systems and Technologies. WorldCIST 2024. Lecture Notes in Networks and Systems, vol 986. Springer, Cham. https://doi.org/10.1007/978-3-031-60218-4_23

Download citation

Publish with us

Policies and ethics