Skip to main content

A Graph-Based Approach for Searching and Visualizing of Resources and Concepts in Data Science

  • Conference paper
  • First Online:
Good Practices and New Perspectives in Information Systems and Technologies (WorldCIST 2024)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 987))

Included in the following conference series:

  • 351 Accesses

Abstract

The paper presents a resource search and visualization approach for learning data science fundamentals. We implement a web prototype that uses a knowledge graph built from the topics of the domain and a metadata repository of resources related to these topics. The application allows the graphical and interactive visualization of the graph and its semantic relationships, as well as the exploration, search, and visualization of concepts and resources. The results of the preliminary validation show its potential to improve the understanding of data science topics and promote free access to educational resources such as datasets, notebooks, and multimedia material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://openrefine.org/.

  2. 2.

    https://www.dbpedia.org/.

  3. 3.

    https://github.com/drmorales4/data-scienceTIC.

References

  1. Bai, Z.: Variable incremental adaptive learning model based on knowledge graph and its application in online learning system. Int. J. Comput. Appl. 44, 650–658 (2021)

    Google Scholar 

  2. Bernasconi, E., et al.: ARCA. Semantic exploration of a bookstore. In: Proceedings of the International Conference on Advanced Visual Interfaces. AVI 2020. Association for Computing Machinery, New York, USA (2020)

    Google Scholar 

  3. Berners-Lee, T.: Linked data (2006). https://www.w3.org/DesignIssues/LinkedData.html

  4. Berners-Lee, T., Hendler, J.A., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)

    Article  Google Scholar 

  5. Blei, D.M., Smyth, P.: Science and data science. Proc. Natl. Acad. Sci. 114(33), 8689–8692 (2017)

    Article  Google Scholar 

  6. Chen, J., Ayala, B.R., Alsmadi, D., Wang, G.: Fundamentals of data science for future data scientists (2018)

    Google Scholar 

  7. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54(4), 71 (2021)

    Google Scholar 

  8. Konstantinou, Nikolaos, Spanos, Dimitrios-Emmanuel.: Materializing the Web of Linked Data. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16074-0

    Book  Google Scholar 

  9. Li, Y., Zhao, J., Yang, L., Zhang, Y.: Construction, visualization and application of knowledge graph of computer science major. In: Proceedings of the ICBDE 2019, p. 43–47. Association for Computing Machinery, New York (2019)

    Google Scholar 

  10. Nieto, M., et al.: Web service to retrieve and semantically enrich datasets for theses from open educational repositories. IEEE Access 8, 171933–171944 (2020)

    Google Scholar 

  11. Quezada-Sarmiento, P.A., et al.: Body of knowledge model and linked data applied in development of higher education curriculum. In: Arai, Kohei, Kapoor, Supriya (eds.) CVC 2019. AISC, vol. 943, pp. 758–773. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17795-9_57

    Chapter  Google Scholar 

  12. Telnov, V., Korovin, Y.A.: Machine learning and text analysis in the tasks of knowledge graphs refinement and enrichment. In: International Conference on Data Analytics and Management in Data Intensive Domains (2020)

    Google Scholar 

  13. UCM: ¿Por qué estudiar Data Science? 5 razones que harán que te decidas (2020). https://www.masterdatascienceucm.com/por-que-estudiar-data-science/

  14. Xing, X., Dou, J., Xiangjun, W., Xiaolin, Y.: Knowledge graph based teaching analysis on circuit course. In: 2020 International Conference on Modern Education and Information Management (ICMEIM), pp. 767–771 (2020)

    Google Scholar 

  15. Zablith, F., Azad, B.: Reconciling instructors’ and students’ course overlap perspectives via linked data visualization. IEEE Trans. Learn. Technol. 14(5), 680–694 (2021). https://doi.org/10.1109/TLT.2021.3118902

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janneth Chicaiza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morales-Quezada, D., Chicaiza, J. (2024). A Graph-Based Approach for Searching and Visualizing of Resources and Concepts in Data Science. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Poniszewska-Marańda, A. (eds) Good Practices and New Perspectives in Information Systems and Technologies. WorldCIST 2024. Lecture Notes in Networks and Systems, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-031-60221-4_25

Download citation

Publish with us

Policies and ethics