Abstract
The paper presents a resource search and visualization approach for learning data science fundamentals. We implement a web prototype that uses a knowledge graph built from the topics of the domain and a metadata repository of resources related to these topics. The application allows the graphical and interactive visualization of the graph and its semantic relationships, as well as the exploration, search, and visualization of concepts and resources. The results of the preliminary validation show its potential to improve the understanding of data science topics and promote free access to educational resources such as datasets, notebooks, and multimedia material.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, Z.: Variable incremental adaptive learning model based on knowledge graph and its application in online learning system. Int. J. Comput. Appl. 44, 650–658 (2021)
Bernasconi, E., et al.: ARCA. Semantic exploration of a bookstore. In: Proceedings of the International Conference on Advanced Visual Interfaces. AVI 2020. Association for Computing Machinery, New York, USA (2020)
Berners-Lee, T.: Linked data (2006). https://www.w3.org/DesignIssues/LinkedData.html
Berners-Lee, T., Hendler, J.A., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)
Blei, D.M., Smyth, P.: Science and data science. Proc. Natl. Acad. Sci. 114(33), 8689–8692 (2017)
Chen, J., Ayala, B.R., Alsmadi, D., Wang, G.: Fundamentals of data science for future data scientists (2018)
Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. 54(4), 71 (2021)
Konstantinou, Nikolaos, Spanos, Dimitrios-Emmanuel.: Materializing the Web of Linked Data. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16074-0
Li, Y., Zhao, J., Yang, L., Zhang, Y.: Construction, visualization and application of knowledge graph of computer science major. In: Proceedings of the ICBDE 2019, p. 43–47. Association for Computing Machinery, New York (2019)
Nieto, M., et al.: Web service to retrieve and semantically enrich datasets for theses from open educational repositories. IEEE Access 8, 171933–171944 (2020)
Quezada-Sarmiento, P.A., et al.: Body of knowledge model and linked data applied in development of higher education curriculum. In: Arai, Kohei, Kapoor, Supriya (eds.) CVC 2019. AISC, vol. 943, pp. 758–773. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-17795-9_57
Telnov, V., Korovin, Y.A.: Machine learning and text analysis in the tasks of knowledge graphs refinement and enrichment. In: International Conference on Data Analytics and Management in Data Intensive Domains (2020)
UCM: ¿Por qué estudiar Data Science? 5 razones que harán que te decidas (2020). https://www.masterdatascienceucm.com/por-que-estudiar-data-science/
Xing, X., Dou, J., Xiangjun, W., Xiaolin, Y.: Knowledge graph based teaching analysis on circuit course. In: 2020 International Conference on Modern Education and Information Management (ICMEIM), pp. 767–771 (2020)
Zablith, F., Azad, B.: Reconciling instructors’ and students’ course overlap perspectives via linked data visualization. IEEE Trans. Learn. Technol. 14(5), 680–694 (2021). https://doi.org/10.1109/TLT.2021.3118902
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Morales-Quezada, D., Chicaiza, J. (2024). A Graph-Based Approach for Searching and Visualizing of Resources and Concepts in Data Science. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Poniszewska-Marańda, A. (eds) Good Practices and New Perspectives in Information Systems and Technologies. WorldCIST 2024. Lecture Notes in Networks and Systems, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-031-60221-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-60221-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60220-7
Online ISBN: 978-3-031-60221-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)