Skip to main content

An Open-Source Model for Estimating the Need to Expansion in Local Charging Infrastructures

  • Conference paper
  • First Online:
Geographical Information Systems Theory, Applications and Management (GISTAM 2023)

Abstract

The growing adoption of electric vehicles (EVs) poses new challenges for the planning and management of charging infrastructures (CIs). This paper proposes a methodology to estimate the sufficiency of EV charging infrastructures in a given area of study (AOS) containing public and private buildings, using open-source data and a case study of Lindau (Bodensee), Germany. The methodology consists of two main steps: first, applying the attractiveness factor concept from travel models to cluster buildings according to their potential EV users; second, classifying charging stations based on their location and occupancy rate. To reach our desired result, we compare the number of charging hours needed by EVs arriving at each building cluster with the number of available charging stations in each station cluster, and identify any gaps or surpluses. The paper demonstrates the feasibility and applicability of the methodology using data from the city Lindau (Bodensee) as an example. The paper also discusses the limitations and assumptions of the methodology, and suggests future directions for developing a machine-learning based tool that could support optimal placement of new charging stations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.qgis.org.

References

  1. Hinweise zur Schätzung des Verkehrsaufkommens von Gebietstypen (2006)

    Google Scholar 

  2. Abdi, H., Mohammadi-ivatloo, B., Javadi, S., Khodaei, A.R., Dehnavi, E.: Chapter 7 - energy storage systems. In: Gharehpetian, G., Mousavi Agah, S.M. (eds.) Distributed Generation Systems, Butterworth-Heinemann, pp. 333–368 (2017). https://doi.org/10.1016/B978-0-12-804208-3.00007-8, https://www.sciencedirect.com/science/article/pii/B9780128042083000078

  3. Bosserhoff, D.: Programm VER_bau: Abschätzung des verkehrsaufkommens durch vorhaben der bauleitplanung mit excel-tabellen am PC (2003). https://www.dietmar-bosserhoff.de/index.html

  4. Calearo, L., Marinelli, M., Ziras, C.: A review of data sources for electric vehicle integration studies. Renew. Sustain. Energy Rev. 151, 111518 (2021)

    Article  Google Scholar 

  5. Center of automotive management: electromoility report 2022 (2022)

    Google Scholar 

  6. Detlef Borscheid, Kraftfahrt-Bundesamt: Prognose: Mehr als elf Millionen Elektroautos und Plug-Ins bis 2030. Autohaus (2020)

    Google Scholar 

  7. Draz, M., Albayrak, S.: A power demand estimator for electric vehicle charging infrastructure. In: 2019 IEEE Milan PowerTec, pp. 1–6. IEEE (2019). https://doi.org/10.1109/PTC.2019.8810659

  8. Elattar, H.: Open-data methodology for optimizing the allocations of Charging Stations

    Google Scholar 

  9. Elattar, H., Von Tüllenburg, F., Wöllmann, S., Valdes, J.: Evaluating the fulfilment rate of charging demand for electric vehicles using open-source data. In: Proceedings of the 9th International Conference on Geographical Information Systems Theory, Applications and Management. SCITEPRESS - Science and Technology Publications, Prague, Czech Republic, pp. 159–166 (2023). https://doi.org/10.5220/0011849400003473, https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0011849400003473

  10. Friese, P.A., Michalk, W., Fischer, M., Hardt, C., Bogenberger, K.: Charging point usage in Germany-automated retrieval, analysis, and usage types explained. Sustainability 13(23), 13046 (2021)

    Article  Google Scholar 

  11. Hecht, C., Das, S., Bussar, C., Sauer, D.U.: Representative, empirical, real-world charging station usage characteristics and data in Germany. ETransportation, 6, 100079(2020). https://doi.org/10.1016/j.etran.2020.100079

  12. Hernández-Moreno, A., et al.: Transient traffic energy-use analysis employing video-tracking and microscopic modeling techniques: a case study using electric and combustion engine vehicles. Energy Sci. Eng. 10(7), 2022–2034 (2022). https://doi.org/10.1002/ese3.1148

    Article  Google Scholar 

  13. Hummler, P., Naumzik, C., Feuerriegel, S.: Web mining to inform locations of charging stations for electric vehicles. In: Companion Proceedings of the Web Conference 2022, pp. 166–170 (2022). https://doi.org/10.1145/3487553.3524264, http://arxiv.org/abs/2203.07081, arXiv:2203.07081 [cs]

  14. Jahn, R.M., Syré, A., Grahle, A., Schlenther, T., Göhlich, D.: Methodology for determining charging strategies for urban private vehicles based on traffic simulation results. Procedia Comput. Sci. 170, 751–756 (2020). https://doi.org/10.1016/j.procs.2020.03.160

    Article  Google Scholar 

  15. Janowicz, K., Gao, S., McKenzie, G., Hu, Y., Bhaduri, B.: GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. Int. J. Geogr. Inf. Sci. 34(4), 625–636 (2020)

    Article  Google Scholar 

  16. Akker, J.M. van den.: E-Vehicles: Interaction of Smart Charging and DSO Strategies. Utrecht University (2020)

    Google Scholar 

  17. Klinkhardt, C., et al.: Using OpenStreetMap as a data source for attractiveness in travel demand models. Transp. Res. Rec. 2675(8), 294–303 (2021). https://doi.org/10.1177/0361198121997415

    Article  Google Scholar 

  18. Koch, L., et al.: Accurate physics-based modeling of electric vehicle energy consumption in the SUMO traffic microsimulator. In: 2021 IEEE International Intelligen Transportation Systems Conference ITSC, pp. 1650–1657. IEEE (2021). https://doi.org/10.1109/ITSC48978.2021.9564463

  19. Kraftfahrt-Bundesamt: Der fahrzeugbestand am 1. januar 2022 (2022)

    Google Scholar 

  20. Mock, P.: European union co2 standards for new passenger cars and vans (2021)

    Google Scholar 

  21. Mortimer, B.J., Hecht, C., Goldbeck, R., Sauer, D.U., De Doncker, R.W.: Electric vehicle public charging infrastructure planning using real-world charging data. World Electr. Veh. J. 13(6), 94 (2022)

    Article  Google Scholar 

  22. Neufert, E., Neufert, P., Kister, J.: Architects’ data. Wiley-Blackwell, Chichester, West Sussex, UK ; Ames, Iowa, 4th ed edn. (2012), oCLC: ocn775329524

    Google Scholar 

  23. Pagany, R., Marquardt, A., Zink, R.: Electric charging demand location model-a user- and destination-based locating approach for electric vehicle charging stations. Sustainability 11(8), 2301 (2019)

    Article  Google Scholar 

  24. Pinjari, A.R., Bhat, C.R.: CHAPTER 17. Activity-based Travel Demand Analysis

    Google Scholar 

  25. Schlote, A., Crisostomi, E., Kirkland, S., Shorten, R.: Traffic modelling framework for electric vehicles. Int. J. Control 85(7), 880–897 (2021). https://doi.org/10.1080/00207179.2012.668716

    Article  MathSciNet  Google Scholar 

  26. Sparks, K., Thakur, G., Pasarkar, A., Urban, M.: A global analysis of cities’ geosocial temporal signatures for points of interest hours of operation. Int. J. Geogr. Inf. Sci. 34(4), 759–776 (2020)

    Article  Google Scholar 

  27. Valdes, J., Wuth, J., Zink, R., Schröck, S., Schmidbauer, M.: Extracting relevant points of interest from open street map to support E-mobility infrastructure models. Bavarian J. Appl. Sci 4, 323341 (2018). https://doi.org/10.25929/BJAS.V4I1.51

  28. Westin, R.B., Manski, C.F.: Theoretical and Conceptual Developments in Demand Modelling. Routledge (1979)

    Google Scholar 

  29. Wirges, J., Linder, S., Kessler, A.: Modelling the development of a regional charging infrastructure for electric vehicles in time and space. Eur. J. Transp. Infrastruct. Res. 12(4) (2012). https://doi.org/10.18757/ejtir.2012.12.4.2976, https://journals.open.tudelft.nl/ejtir/article/view/2976

  30. Zhou, Y., et al.: Plug-in electric vehicle market penetration and incentives: a global review. Mitig. Adapt. Strat. Glob. Change 20(5), 777–795 (2014). https://doi.org/10.1007/s11027-014-9611-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Elattar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elattar, H., von Tüllenburg, F., Karas, S., Valdes, J. (2024). An Open-Source Model for Estimating the Need to Expansion in Local Charging Infrastructures. In: Grueau, C., Rodrigues, A., Ragia, L. (eds) Geographical Information Systems Theory, Applications and Management. GISTAM 2023. Communications in Computer and Information Science, vol 2107. Springer, Cham. https://doi.org/10.1007/978-3-031-60277-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60277-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60276-4

  • Online ISBN: 978-3-031-60277-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics