Abstract
The demand for facial recognition technology has grown in various sectors over the past decade, but the need for efficient feature selection methods is crucial due to high-dimensional data complexity. This paper explores the potential of quantum computing for Sparse Sensor Placement optimisation (SSPO) in facial image classification. It studies a well known Filter Approach, based on statistical measures like Pearson correlation and Mutual Information, as it offers computational simplicity and speed. The proposed Quadratic Unconstrained Binary optimisation (QUBO) formulation for SSPO, inspired by the Quadratic Programming Feature Selection approach, aims to select a sparse set of relevant features while minimising redundancy. QUBO formulations can be solved by simulated annealing and by quantum annealing. Two experiments were conducted to compare the QUBO with a machine learning (ML) approach. The results showed that the QUBO approach, utilising simulated annealing, achieved an accuracy between random placed sensors and ML based sensors. The ML algorithm outperformed the QUBO approach, likely due to its ability to capture relevant features more effectively. The QUBO approach’s advantage lies in its much shorter running time. The study suggests potential improvements by using Mutual Information instead of Pearson correlation as a measure of feature relevance. Additionally, it highlights the limitations of quantum annealers’ current connectivity and the need for further advancements in quantum hardware.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brunton, B.W., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Sparse sensor placement optimization for classification. SIAM J. Appl. Math. 76(5), 2099–2122 (2016)
Camino, B., Buckeridge, J., Warburton, P., Kendon, V., Woodley, S.: Quantum computing and materials science: a practical guide to applying quantum annealing to the configurational analysis of materials. J. Appl. Phy. 133(22) (2023)
Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)
Chen, B., Hong, J., Wang, Y.: The minimum feature subset selection problem. J. Comput. Sci. Technol. 12, 145–153 (1997)
Zhong, J., Ma, C., Zhou, J., Wang, W.: PDPNN: modeling user personal dynamic preference for next point-of-interest recommendation. In: Krzhizhanovskaya, V.V. (ed.) ICCS 2020. LNCS, vol. 12142, pp. 45–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_4
Colucci, G., Linde, S., Phillipson, F.: Power network optimization: a quantum approach. IEEE Access 11, 98926–98938 (2023). https://doi.org/10.1109/ACCESS.2023.3312997
D-Wave System Documentation: Neal documentation (2022). https://docs.ocean.dwavesys.com/projects/neal/en/latest/index.html [Accessed: 01 Mar 2024]
Domino, K., Koniorczyk, M., Krawiec, K., Jałowiecki, K., Deffner, S., Gardas, B.: Quantum annealing in the NISQ era: railway conflict management. Entropy 25(2), 191 (2023)
Duda, R.O., Hart, P.E., et al.: Pattern classification. John Wiley and Sons (2006)
Egger, D.J., et al.: Quantum computing for finance: state-of-the-art and future prospects. IEEE Trans. Quantum Eng. 1, 1–24 (2020)
Glover, F., Kochenberger, G., Hennig, R., Du, Y.: Quantum bridge analytics I: a tutorial on formulating and using QUBO models. Ann. Oper. Res. 1–43 (2022). https://doi.org/10.1007/s10479-022-04634-2
Heim, B., Rønnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of ising spin glasses. Science 348(6231), 215–217 (2015)
Inza, I., Sierra, B., Blanco, R., Larrañaga, P.: Gene selection by sequential search wrapper approaches in microarray cancer class prediction. J. Intell. Fuzzy Syst. 12(1), 25–33 (2002)
Jadhav, S., He, H., Jenkins, K.: Information gain directed genetic algorithm wrapper feature selection for credit rating. Appl. Soft Comput. 69, 541–553 (2018)
Karegowda, A.G., Jayaram, M., Manjunath, A.: Feature subset selection problem using wrapper approach in supervised learning. Int. J. Comput. Appl. 1(7), 13–17 (2010)
Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optim. Simulated Annealing. Sci. 220(4598), 671–680 (1983)
König, G., Molnar, C., Bischl, B., Grosse-Wentrup, M.: Relative feature importance. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 9318–9325. IEEE (2021)
Lin, M.M., Shu, Y.C., Lu, B.Z., Fang, P.S.: Nurse scheduling problem via PyQUBO. arXiv preprint arXiv:2302.09459 (2023)
Lucas, A.: Ising formulations of many NP problems. Frontiers in physics, p .74887 (2) (2014)
Manohar, K., Brunton, B.W., Kutz, J.N., Brunton, S.L.: Data-driven sparse sensor placement for reconstruction: demonstrating the benefits of exploiting known patterns. IEEE Control Syst. Mag. 38(3), 63–86 (2018)
Morita, S., Nishimori, H.: Mathematical foundation of quantum annealing. J. Math. Phy. 49(12) (2008)
Mücke, S., Heese, R., Müller, S., Wolter, M., Piatkowski, N.: Feature selection on quantum computers. Quantum Mach. Intell. 5(1), 11 (2023)
Nazareth, D.P., Spaans, J.D.: First application of quantum annealing to IMRT beamlet intensity optimization. Phy. Med. Biol. 60(10), 4137 (2015)
Neukart, F., Compostella, G., Seidel, C., Von Dollen, D., Yarkoni, S., Parney, B.: Traffic flow optimization using a quantum annealer. Frontiers in ICT 4, 29 (2017)
Nguyen, V., Chan, J., Romano, S., Bailey, J.: Effective global approaches for mutual information based feature selection. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp .512–521 (2014). https://doi.org/10.1145/2623330.2623611
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)
Phillipson, F.: Quantum Comput. Telecommun. Surv. Math. 11(15), 3423 (2023)
Phillipson, F.: Quantum computing in logistics and supply chain management-an overview. arXiv preprint. arXiv:2402.17520 (2024)
Phillipson, F., Chiscop, I.: Multimodal container planning: a QUBO formulation and implementation on a quantum annealer. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 30–44. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77980-1_3
Roch, C., Ratke, D., Nüßlein, J., Gabor, T., Feld, S.: The effect of penalty factors of constrained hamiltonians on the eigenspectrum in quantum annealing. ACM Trans. Quantum Comput. 4(2), 1–18 (2023)
Rodriguez-Lujan, I., Huerta, R., Elkan, C., Cruz, C.S.: Quadratic programming feature selection. J. Mach. Learn. Res. 11, 1491–1516 (2010)
Sánchez-Maroño, N., Alonso-Betanzos, A., Tombilla-Sanromán, M.: Filter methods for feature selection – a comparative study. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 178–187. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77226-2_19
Symons, B.C., Galvin, D., Sahin, E., Alexandrov, V., Mensa, S.: A practitioner’s guide to quantum algorithms for optimisation problems. J. Phys. A: Math. Theor. 56(45), 453001 (2023)
Thales Group: Facial recognition: top 7 trends (tech, vendors, use cases). https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/biometrics/facial-recognition
Venegas-Andraca, S.E., Cruz-Santos, W., McGeoch, C., Lanzagorta, M.: A cross-disciplinary introduction to quantum annealing-based algorithms. Contemp. Phys. 59(2), 174–197 (2018)
Wang, Y., Li, X., Ruiz, R.: Feature selection with maximal relevance and minimal supervised redundancy. IEEE Trans. Cybern. 53(2), 707–717 (2022)
Yarbus, A.L.: Eye movements and vision. Springer,New York (2013). https://doi.org/10.1007/978-1-4899-5379-7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
van Dommelen, M.R., Phillipson, F. (2024). QUBO Formulation for Sparse Sensor Placement for Classification. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2024. Communications in Computer and Information Science, vol 2109. Springer, Cham. https://doi.org/10.1007/978-3-031-60433-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-60433-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60432-4
Online ISBN: 978-3-031-60433-1
eBook Packages: Computer ScienceComputer Science (R0)