Skip to main content

QUBO Formulation for Sparse Sensor Placement for Classification

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2024)

Abstract

The demand for facial recognition technology has grown in various sectors over the past decade, but the need for efficient feature selection methods is crucial due to high-dimensional data complexity. This paper explores the potential of quantum computing for Sparse Sensor Placement optimisation (SSPO) in facial image classification. It studies a well known Filter Approach, based on statistical measures like Pearson correlation and Mutual Information, as it offers computational simplicity and speed. The proposed Quadratic Unconstrained Binary optimisation (QUBO) formulation for SSPO, inspired by the Quadratic Programming Feature Selection approach, aims to select a sparse set of relevant features while minimising redundancy. QUBO formulations can be solved by simulated annealing and by quantum annealing. Two experiments were conducted to compare the QUBO with a machine learning (ML) approach. The results showed that the QUBO approach, utilising simulated annealing, achieved an accuracy between random placed sensors and ML based sensors. The ML algorithm outperformed the QUBO approach, likely due to its ability to capture relevant features more effectively. The QUBO approach’s advantage lies in its much shorter running time. The study suggests potential improvements by using Mutual Information instead of Pearson correlation as a measure of feature relevance. Additionally, it highlights the limitations of quantum annealers’ current connectivity and the need for further advancements in quantum hardware.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brunton, B.W., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Sparse sensor placement optimization for classification. SIAM J. Appl. Math. 76(5), 2099–2122 (2016)

    Article  MathSciNet  Google Scholar 

  2. Camino, B., Buckeridge, J., Warburton, P., Kendon, V., Woodley, S.: Quantum computing and materials science: a practical guide to applying quantum annealing to the configurational analysis of materials. J. Appl. Phy. 133(22) (2023)

    Google Scholar 

  3. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)

    Article  Google Scholar 

  4. Chen, B., Hong, J., Wang, Y.: The minimum feature subset selection problem. J. Comput. Sci. Technol. 12, 145–153 (1997)

    Article  MathSciNet  Google Scholar 

  5. Zhong, J., Ma, C., Zhou, J., Wang, W.: PDPNN: modeling user personal dynamic preference for next point-of-interest recommendation. In: Krzhizhanovskaya, V.V. (ed.) ICCS 2020. LNCS, vol. 12142, pp. 45–57. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_4

    Chapter  Google Scholar 

  6. Colucci, G., Linde, S., Phillipson, F.: Power network optimization: a quantum approach. IEEE Access 11, 98926–98938 (2023). https://doi.org/10.1109/ACCESS.2023.3312997

    Article  Google Scholar 

  7. D-Wave System Documentation: Neal documentation (2022). https://docs.ocean.dwavesys.com/projects/neal/en/latest/index.html [Accessed: 01 Mar 2024]

  8. Domino, K., Koniorczyk, M., Krawiec, K., Jałowiecki, K., Deffner, S., Gardas, B.: Quantum annealing in the NISQ era: railway conflict management. Entropy 25(2), 191 (2023)

    Article  MathSciNet  Google Scholar 

  9. Duda, R.O., Hart, P.E., et al.: Pattern classification. John Wiley and Sons (2006)

    Google Scholar 

  10. Egger, D.J., et al.: Quantum computing for finance: state-of-the-art and future prospects. IEEE Trans. Quantum Eng. 1, 1–24 (2020)

    Article  Google Scholar 

  11. Glover, F., Kochenberger, G., Hennig, R., Du, Y.: Quantum bridge analytics I: a tutorial on formulating and using QUBO models. Ann. Oper. Res. 1–43 (2022). https://doi.org/10.1007/s10479-022-04634-2

  12. Heim, B., Rønnow, T.F., Isakov, S.V., Troyer, M.: Quantum versus classical annealing of ising spin glasses. Science 348(6231), 215–217 (2015)

    Article  MathSciNet  Google Scholar 

  13. Inza, I., Sierra, B., Blanco, R., Larrañaga, P.: Gene selection by sequential search wrapper approaches in microarray cancer class prediction. J. Intell. Fuzzy Syst. 12(1), 25–33 (2002)

    Google Scholar 

  14. Jadhav, S., He, H., Jenkins, K.: Information gain directed genetic algorithm wrapper feature selection for credit rating. Appl. Soft Comput. 69, 541–553 (2018)

    Article  Google Scholar 

  15. Karegowda, A.G., Jayaram, M., Manjunath, A.: Feature subset selection problem using wrapper approach in supervised learning. Int. J. Comput. Appl. 1(7), 13–17 (2010)

    Google Scholar 

  16. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optim. Simulated Annealing. Sci. 220(4598), 671–680 (1983)

    Google Scholar 

  17. König, G., Molnar, C., Bischl, B., Grosse-Wentrup, M.: Relative feature importance. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 9318–9325. IEEE (2021)

    Google Scholar 

  18. Lin, M.M., Shu, Y.C., Lu, B.Z., Fang, P.S.: Nurse scheduling problem via PyQUBO. arXiv preprint arXiv:2302.09459 (2023)

  19. Lucas, A.: Ising formulations of many NP problems. Frontiers in physics, p .74887 (2) (2014)

    Google Scholar 

  20. Manohar, K., Brunton, B.W., Kutz, J.N., Brunton, S.L.: Data-driven sparse sensor placement for reconstruction: demonstrating the benefits of exploiting known patterns. IEEE Control Syst. Mag. 38(3), 63–86 (2018)

    Article  MathSciNet  Google Scholar 

  21. Morita, S., Nishimori, H.: Mathematical foundation of quantum annealing. J. Math. Phy. 49(12) (2008)

    Google Scholar 

  22. Mücke, S., Heese, R., Müller, S., Wolter, M., Piatkowski, N.: Feature selection on quantum computers. Quantum Mach. Intell. 5(1), 11 (2023)

    Article  Google Scholar 

  23. Nazareth, D.P., Spaans, J.D.: First application of quantum annealing to IMRT beamlet intensity optimization. Phy. Med. Biol. 60(10), 4137 (2015)

    Article  Google Scholar 

  24. Neukart, F., Compostella, G., Seidel, C., Von Dollen, D., Yarkoni, S., Parney, B.: Traffic flow optimization using a quantum annealer. Frontiers in ICT 4, 29 (2017)

    Article  Google Scholar 

  25. Nguyen, V., Chan, J., Romano, S., Bailey, J.: Effective global approaches for mutual information based feature selection. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp .512–521 (2014). https://doi.org/10.1145/2623330.2623611

  26. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  27. Phillipson, F.: Quantum Comput. Telecommun. Surv. Math. 11(15), 3423 (2023)

    Google Scholar 

  28. Phillipson, F.: Quantum computing in logistics and supply chain management-an overview. arXiv preprint. arXiv:2402.17520 (2024)

  29. Phillipson, F., Chiscop, I.: Multimodal container planning: a QUBO formulation and implementation on a quantum annealer. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 30–44. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77980-1_3

    Chapter  Google Scholar 

  30. Roch, C., Ratke, D., Nüßlein, J., Gabor, T., Feld, S.: The effect of penalty factors of constrained hamiltonians on the eigenspectrum in quantum annealing. ACM Trans. Quantum Comput. 4(2), 1–18 (2023)

    Article  MathSciNet  Google Scholar 

  31. Rodriguez-Lujan, I., Huerta, R., Elkan, C., Cruz, C.S.: Quadratic programming feature selection. J. Mach. Learn. Res. 11, 1491–1516 (2010)

    MathSciNet  Google Scholar 

  32. Sánchez-Maroño, N., Alonso-Betanzos, A., Tombilla-Sanromán, M.: Filter methods for feature selection – a comparative study. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 178–187. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77226-2_19

    Chapter  Google Scholar 

  33. Symons, B.C., Galvin, D., Sahin, E., Alexandrov, V., Mensa, S.: A practitioner’s guide to quantum algorithms for optimisation problems. J. Phys. A: Math. Theor. 56(45), 453001 (2023)

    Article  MathSciNet  Google Scholar 

  34. Thales Group: Facial recognition: top 7 trends (tech, vendors, use cases). https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/biometrics/facial-recognition

  35. Venegas-Andraca, S.E., Cruz-Santos, W., McGeoch, C., Lanzagorta, M.: A cross-disciplinary introduction to quantum annealing-based algorithms. Contemp. Phys. 59(2), 174–197 (2018)

    Article  Google Scholar 

  36. Wang, Y., Li, X., Ruiz, R.: Feature selection with maximal relevance and minimal supervised redundancy. IEEE Trans. Cybern. 53(2), 707–717 (2022)

    Article  Google Scholar 

  37. Yarbus, A.L.: Eye movements and vision. Springer,New York (2013). https://doi.org/10.1007/978-1-4899-5379-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Phillipson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Dommelen, M.R., Phillipson, F. (2024). QUBO Formulation for Sparse Sensor Placement for Classification. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2024. Communications in Computer and Information Science, vol 2109. Springer, Cham. https://doi.org/10.1007/978-3-031-60433-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60433-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60432-4

  • Online ISBN: 978-3-031-60433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics