Skip to main content

WebMap - Large Language Model-assisted Semantic Link Induction in the Web

  • Conference paper
  • First Online:
Innovations for Community Services (I4CS 2024)

Abstract

Carrying out research tasks is only inadequately supported, if not hindered, by current web search engines. This paper therefore proposes functional extensions of WebMap, a semantically induced overlay linking structure on the web to inherently facilitate research activities. These add-ons support the dynamic determination and regrouping of document clusters, the creation of a semantic signpost in the web, and the interactive tracing of topics back to their origins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roßrucker, G.: A Concept for a distributed Webmap. In: Supporting Web Search and Navigation by an Overlay Linking Structure. Studies in Big Data, vol. 142. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-48393-6_3

  2. Kubek, M., Unger, H.: Centroid terms as text representatives. In: Proceedings of the 2016 ACM Symposium on Document Engineering, pp. 99–102, ACM, New York, NY, USA (2016)

    Google Scholar 

  3. Jin, W., Srihari, R.K.: Graph-based text representation and knowledge discovery. In: Proceedings of the 2007 ACM Symposium on Applied Computing, ACM, New York, NY, USA (2007)

    Google Scholar 

  4. Biemann, C., Heyer, G., uasthoff, U.: Wissensrohstoff Text: Eine Einführung in das Text Mining. 2nd Edition, Springer Fachmedien Wiesbaden (2022)

    Google Scholar 

  5. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2019)

    Google Scholar 

  6. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text (2019)

    Google Scholar 

  7. Araci, D.: Finbert: Financial sentiment analysis with pre-trained language models (2019)

    Google Scholar 

  8. Kubek, M.: Concepts and Methods for a Librarian of the Web. In: Studies in Big Data, Vol. 62, Springer, Cham (2020)

    Google Scholar 

  9. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999) ACM, New York, NY, USA

    Google Scholar 

  10. Bock, H.H.: Automatische Klassifkation. Vandenhoeck & Ruprecht, Göttingen (1974)

    Google Scholar 

  11. Schnell, P.: Eine Methode zur Auffindung von Gruppen. Biometrische Zeitschrift, 6, 47–48 (1964)

    Google Scholar 

  12. Komkhao, M., Kubek, M., Halang, W.A.: Sequential clustering and condensing the meaning of texts into centroid terms. Inf. Technol. J. 14, 1–10 (2018)

    Google Scholar 

  13. Vaswani, A., et al.: Attention Is All You Need. arXiv:1706.03762v7 [cs.CL] (2017)

  14. Minaee, S., Mikolov, T., et al.: Large Language Models: a survey. arXiv:2402.06196v2 [cs.CL] (2024)

  15. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  16. OpenAI: GPT-4 Technical Report (2023). https://arxiv.org/pdf/2303.08774v3.pdf

  17. Touvron, H., et al.: LLaMA: open and efficient foundation language models. arXiv:2302.13971 [cs.CL] (2023)

  18. Touvron, H., Martin, L., et al.: Llama2: open foundation and fine-tuned chat models. arXiv:2307.09288 [cs.CL] (2023)

  19. Jiang, A.Q., Sablayrolles, A., et al.: Mistral 7B. arXiv:2310.06825v1 [cs.CL] (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiraj Pokharel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pokharel, S., Roßrucker, G.P., Kubek, M.M. (2024). WebMap - Large Language Model-assisted Semantic Link Induction in the Web. In: Phillipson, F., Eichler, G., Erfurth, C., Fahrnberger, G. (eds) Innovations for Community Services. I4CS 2024. Communications in Computer and Information Science, vol 2109. Springer, Cham. https://doi.org/10.1007/978-3-031-60433-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60433-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60432-4

  • Online ISBN: 978-3-031-60433-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics