Skip to main content

Evaluating the Effectiveness of the Peer Data Labelling System (PDLS)

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14734))

Included in the following conference series:

  • 962 Accesses

Abstract

The Peer Data Labelling System (PDLS) is a novel and extensible approach to generating labelled data suitable for training supervised machine learning (ML) algorithms for use in Child Computer Interaction (CCI) research and development. For a supervised ML model to make accurate predictions it requires accurate data on which to train. Poor quality input data to systems results in poor quality outputs often referred to as garbage in, garbage out (GIGO) systems.

PDLS is an alternative system to commonly employed approaches to facial and emotion recognition such as the Facial Action Coding System (FACS) or algorithmic approaches such as AFFDEX or FACET.

This paper presents the approaches taken to evaluate the effectiveness of PDLS. Algorithmic approaches did not produce consistent classifications and major amendments to the PDLS would be required if that validation route was pursued. The human review process found that the pupil observers and reviewers reached consensus in classifying most of the data as engaged. Recognising disengagement is more challenging, and further work is required to ensure that there is more consistency in what the participants recognise as engagement and disengagement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishay, M., Preston, K., Strafuss, M., Page, G., Turcot, J., Mavadati, M.: Affdex 2.0: a real-time facial expression analysis toolkit. arXiv preprint arXiv:2202.12059 (2022)

  2. Bryant, D., Howard, A.: A comparative analysis of emotion-detecting AI systems with respect to algorithm performance and dataset diversity. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 377–382 (2019)

    Google Scholar 

  3. Christenson, S., Reschly, A.L., Wylie, C., et al.: Handbook of Research on Student Engagement, vol. 840. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-2018-7

    Book  Google Scholar 

  4. Cohn, J.F., Ambadar, Z., Ekman, P.: Observer-based measurement of facial expression with the facial action coding system. In: The Handbook of Emotion Elicitation and Assessment, vol. 1, no. 3, pp. 203–221 (2007)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Dupré, D., Krumhuber, E.G., Küster, D., McKeown, G.J.: A performance comparison of eight commercially available automatic classifiers for facial affect recognition. PLoS ONE 15(4), e0231968 (2020)

    Article  Google Scholar 

  7. Ekman, P.: Facial action coding system, January 2020. https://www.paulekman.com/facial-action-coding-system/

  8. Ekman, P., Friesen, W.V.: Facial action coding system. Environ. Psychol. Nonverbal Behav. (1978)

    Google Scholar 

  9. Fredricks, J.A., Blumenfeld, P.C., Paris, A.H.: School engagement: potential of the concept, state of the evidence. Rev. Educ. Res. 74(1), 59–109 (2004)

    Article  Google Scholar 

  10. Groccia, J.E.: What is student engagement? New Dir. Teach. Learn. 2018(154), 11–20 (2018)

    Article  Google Scholar 

  11. iMotions: Unpack human behavior, November 2022. https://imotions.com/

  12. Khan, R.A., Crenn, A., Meyer, A., Bouakaz, S.: A novel database of children’s spontaneous facial expressions (LIRIS-CSE). Image Vis. Comput. 83, 61–69 (2019)

    Article  Google Scholar 

  13. Kulke, L., Feyerabend, D., Schacht, A.: A comparison of the Affectiva Imotions facial expression analysis software with EMG for identifying facial expressions of emotion. Front. Psychol. 11, 329 (2020)

    Article  Google Scholar 

  14. Littlewort, G., et al.: The computer expression recognition toolbox (CERT). In: 2011 IEEE International Conference on Automatic Face and Gesture Recognition (FG), pp. 298–305. IEEE (2011)

    Google Scholar 

  15. LoBue, V., Thrasher, C.: The child affective facial expression (CAFE) set: validity and reliability from untrained adults. Front. Psychol. 5, 1532 (2015)

    Article  Google Scholar 

  16. McDuff, D., Mahmoud, A., Mavadati, M., Amr, M., Turcot, J., Kaliouby, R.E.: Affdex SDK: a cross-platform real-time multi-face expression recognition toolkit. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 3723–3726 (2016)

    Google Scholar 

  17. Negrão, J.G., et al.: The child emotion facial expression set: a database for emotion recognition in children. Front. Psychol. 12, 666245 (2021)

    Article  Google Scholar 

  18. Parsonage, G., Horton, M., Read, J.: The peer data labelling system (PDLS). A participatory approach to classifying engagement in the classroom. In: Abdelnour Nocera, J., Kristın Lárusdóttir, M., Petrie, H., Piccinno, A., Winckler, M. (eds.) INTERACT 2023. LNCS, vol. 14143, pp. 224–233. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42283-6_13

  19. Stöckli, S., Schulte-Mecklenbeck, M., Borer, S., Samson, A.C.: Facial expression analysis with affdex and facet: a validation study. Behav. Res. Methods 50(4), 1446–1460 (2018)

    Article  Google Scholar 

  20. Testerman, M.: Databases (a-z) - face image databases - research guides at Princeton university, January 2022. https://libguides.princeton.edu/facedatabases. Accessed 22 Feb 2024

  21. Webb, R., Ayers, S., Endress, A.: The city infant faces database: a validated set of infant facial expressions. Behav. Res. Methods 50(1), 151–159 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Parsonage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parsonage, G., Horton, M., Read, J. (2024). Evaluating the Effectiveness of the Peer Data Labelling System (PDLS). In: Degen, H., Ntoa, S. (eds) Artificial Intelligence in HCI. HCII 2024. Lecture Notes in Computer Science(), vol 14734. Springer, Cham. https://doi.org/10.1007/978-3-031-60606-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60606-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60605-2

  • Online ISBN: 978-3-031-60606-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics