Skip to main content

Do Similar Entities Have Similar Embeddings?

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2024)

Abstract

Knowledge graph embedding models (KGEMs) developed for link prediction learn vector representations for entities in a knowledge graph, known as embeddings. A common tacit assumption is the KGE entity similarity assumption, which states that these KGEMs retain the graph’s structure within their embedding space, i.e., position similar entities within the graph close to one another. This desirable property make KGEMs widely used in downstream tasks such as recommender systems or drug repurposing. Yet, the relation of entity similarity and similarity in the embedding space has rarely been formally evaluated. Typically, KGEMs are assessed based on their sole link prediction capabilities, using ranked-based metrics such as Hits@K or Mean Rank. This paper challenges the prevailing assumption that entity similarity in the graph is inherently mirrored in the embedding space. Therefore, we conduct extensive experiments to measure the capability of KGEMs to cluster similar entities together, and investigate the nature of the underlying factors. Moreover, we study if different KGEMs expose a different notion of similarity. Datasets, pre-trained embeddings and code are available at: https://github.com/nicolas-hbt/similar-embeddings/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We consider both ingoing and outgoing edges to define those neighborhoods.

  2. 2.

    Given, e.g., (SAP, headquarter, Germany), (BOSCH, headquarter, Germany), (Berlin, capitalOf, Germany), with common neighbors, SAP, BOSCH, and Berlin would be equally similar.

  3. 3.

    https://github.com/changyaochen/rbo/.

  4. 4.

    https://github.com/pykeen/pykeen/.

  5. 5.

    https://github.com/IBCNServices/pyRDF2Vec/.

  6. 6.

    https://github.com/bxshi/ConMask/.

  7. 7.

    https://www.microsoft.com/en-us/download/details.aspx?id=52312/.

References

  1. Abboud, R., Ceylan, İ.İ., Lukasiewicz, T., Salvatori, T.: Boxe: a box embedding model for knowledge base completion. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual (2020)

    Google Scholar 

  2. Alshargi, F., Shekarpour, S., Soru, T., Sheth, A.: Concept2vec: metrics for evaluating quality of embeddings for ontological concepts. arXiv preprint: arXiv:1803.04488 (2018)

  3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: Dbpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) The Semantic Web. Lecture Notes in Computer Science, vol. 4825, pp. 722–735. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  4. Balazevic, I., Allen, C., Hospedales, T.M.: TuckER: tensor factorization for knowledge graph completion. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 5184–5193. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1522

  5. Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., et al. (eds.) The Semantic Web. Lecture Notes in Computer Science, vol. 4825, pp. 58–71. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-76298-0_5

    Chapter  Google Scholar 

  6. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Conference on Neural Information Processing Systems (NeurIPS), pp. 2787–2795 (2013)

    Google Scholar 

  7. Chen, W., Zhu, H., Han, X., Liu, Z., Sun, M.: Quantifying similarity between relations with fact distribution. In: Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 2882–2894. Association for Computational Linguistics (2019). https://doi.org/10.18653/V1/P19-1278

  8. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp. 1811–1818. AAAI Press (2018)

    Google Scholar 

  9. Gad-Elrab, M.H., Stepanova, D., Tran, T., Adel, H., Weikum, G.: ExCut: explainable embedding-based clustering over knowledge graphs. In: Pan, J.Z., et al. (eds.) The Semantic Web - ISWC 2020. Lecture Notes in Computer Science(), vol. 12506, pp. 218–237. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62419-4_13

    Chapter  Google Scholar 

  10. Guo, Q., et al.: A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. 34(8), 3549–3568 (2022). https://doi.org/10.1109/TKDE.2020.3028705

    Article  Google Scholar 

  11. Hubert, N., Monnin, P., Brun, A., Monticolo, D.: Sem@k: is my knowledge graph embedding model semantic-aware? Seman. Web 14, 1–37 (2023). https://doi.org/10.3233/SW-233508

    Article  Google Scholar 

  12. Hubert, N., Paulheim, H., Monnin, P., Brun, A., Monticolo, D.: Schema first! learn versatile knowledge graph embeddings by capturing semantics with MASCHInE. In: K-CAP ’23: Knowledge Capture Conference, Pensacola, Florida, USA, December 5-7, 2023. ACM (2023). https://doi.org/10.48550/ARXIV.2306.03659

  13. Ilievski, F., Shenoy, K., Chalupsky, H., Klein, N., Szekely, P.: A study of concept similarity in Wikidata. Seman. Web J. (2023)

    Google Scholar 

  14. Jain, N., Kalo, J.C., Balke, W.T., Krestel, R.: Do embeddings actually capture knowledge graph semantics? In: Verborgh, R., et al. (eds.) The Semantic Web. Lecture Notes in Computer Science(), vol. 12731, pp. 143–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_9

    Chapter  Google Scholar 

  15. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pp. 687–696. The Association for Computer Linguistics (2015).https://doi.org/10.3115/v1/p15-1067

  16. Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Networks Learn. Syst. 33(2), 494–514 (2022). https://doi.org/10.1109/TNNLS.2021.3070843

    Article  MathSciNet  Google Scholar 

  17. Kalo, J., Ehler, P., Balke, W.: Knowledge graph consolidation by unifying synonymous relationships. In: Ghidini, C., et al. (eds.) The Semantic Web - ISWC 2019. Lecture Notes in Computer Science(), vol. 11778, pp. 276–292. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_16

    Chapter  Google Scholar 

  18. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)

    Article  Google Scholar 

  19. Liu, W., et al.: K-BERT: enabling language representation with knowledge graph. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 2901–2908. AAAI Press (2020). https://doi.org/10.1609/AAAI.V34I03.5681

  20. Ma, Y., Cambria, E., Gao, S.: Label embedding for zero-shot fine-grained named entity typing. In: Calzolari, N., Matsumoto, Y., Prasad, R. (eds.) COLING 2016, 26th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan, pp. 171–180. ACL (2016). https://aclanthology.org/C16-1017/

  21. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings (2013)

    Google Scholar 

  22. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on Machine Learning, ICML, pp. 809–816 (2011)

    Google Scholar 

  23. Portisch, J., Heist, N., Paulheim, H.: Knowledge graph embedding for data mining vs. knowledge graph embedding for link prediction-two sides of the same coin? Seman. Web 13(3), 399–422 (2022)

    Article  Google Scholar 

  24. Ristoski, P., Paulheim, H.: Rdf2vec: RDF graph embeddings for data mining. In: Groth, P., et al. (eds.) The Semantic Web - ISWC 2016. Lecture Notes in Computer Science(), vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30

    Chapter  Google Scholar 

  25. Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discovery Data 15(2), 1–49 (2021)

    Article  Google Scholar 

  26. Rossi, A., Matinata, A.: Knowledge graph embeddings: are relation-learning models learning relations? In: Proceedings of the Workshops of the EDBT/ICDT 2020 Joint Conference, Copenhagen, Denmark, March 30, 2020. CEUR Workshop Proceedings, vol. 2578. CEUR-WS.org (2020)

    Google Scholar 

  27. Safavi, T., Koutra, D.: Codex: A comprehensive knowledge graph completion benchmark. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pp. 8328–8350. Association for Computational Linguistics (2020).https://doi.org/10.18653/v1/2020.emnlp-main.669

  28. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983). https://doi.org/10.1109/TSMC.1983.6313167

    Article  Google Scholar 

  29. Shi, B., Weninger, T.: Open-world knowledge graph completion. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp. 1957–1964. AAAI Press (2018). https://doi.org/10.1609/AAAI.V32I1.11535

  30. Sosa, D.N., Derry, A., Guo, M.G., Wei, E., Brinton, C., Altman, R.B.: A literature-based knowledge graph embedding method for identifying drug repurposing opportunities in rare diseases. In: Pacific Symposium on Biocomputing 2020, Fairmont Orchid, Hawaii, USA, January 3-7, 2020, pp. 463–474 (2020)

    Google Scholar 

  31. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, WWW, pp. 697–706. ACM (2007)

    Google Scholar 

  32. Sun, Y., et al.: ERNIE 2.0: a continual pre-training framework for language understanding. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 8968–8975. AAAI Press (2020). https://doi.org/10.1609/AAAI.V34I05.6428

  33. Sun, Z., et al.: A benchmarking study of embedding-based entity alignment for knowledge graphs. Proc. VLDB Endow. 13(11), 2326–2340 (2020)

    Article  Google Scholar 

  34. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: Knowledge graph embedding by relational rotation in complex space. In: 7th International Conference on Learning Representations, ICLR (2019)

    Google Scholar 

  35. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, pp. 57–66. Association for Computational Linguistics (2015)

    Google Scholar 

  36. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: Proceedings of the 33rd International Conference on Machine Learning, ICML, vol. 48, pp. 2071–2080 (2016)

    Google Scholar 

  37. Wang, M., Qiu, L., Wang, X.: A survey on knowledge graph embeddings for link prediction. Symmetry 13(3), 485 (2021)

    Article  Google Scholar 

  38. Webber, W., Moffat, A., Zobel, J.: A similarity measure for indefinite rankings. ACM Trans. Inf. Syst. 28(4), 1–38 (2010). https://doi.org/10.1145/1852102.1852106

    Article  Google Scholar 

  39. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: 3rd International Conference on Learning Representations, ICLR (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Hubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hubert, N., Paulheim, H., Brun, A., Monticolo, D. (2024). Do Similar Entities Have Similar Embeddings?. In: Meroño Peñuela, A., et al. The Semantic Web. ESWC 2024. Lecture Notes in Computer Science, vol 14664. Springer, Cham. https://doi.org/10.1007/978-3-031-60626-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60626-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60625-0

  • Online ISBN: 978-3-031-60626-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics