Skip to main content

Can Contrastive Learning Refine Embeddings

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2024)

Abstract

Recent advancements in contrastive learning have revolutionized self-supervised representation learning and achieved state-of-the-art performance on benchmark tasks. While most existing methods focus on applying contrastive learning on input data modalities like images, natural language sentences, or networks, they overlook the potential of utilizing output from previously trained encoders. In this paper, we introduce SimSkip, a novel contrastive learning framework that specifically refines the input embeddings for downstream tasks. Unlike traditional unsupervised learning approaches, SimSkip takes advantage of the output embedding of encoder models as its input. Through theoretical analysis, we provide evidence that applying SimSkip does not lead to larger upper bounds on downstream task errors than that of the original embedding which is SimSkip’s input. Experiment results on various open datasets demonstrate that the embedding by SimSkip improves the performance on downstream tasks.

L. Liu—Work conducted while the author was an intern at Amazon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/code/laowingkin/netflix-movie-recommendation/data.

References

  1. Bordes, A., N, U.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  2. Chen, M., Zhang, W., Yuan, Z., Jia, Y., Chen, H.: FedE: embedding knowledge graphs in federated setting. In: The 10th International Joint Conference on Knowledge Graphs, IJCKG 2021, pp. 80–88. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3502223.3502233

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 1597–1607. PMLR (2020). https://proceedings.mlr.press/v119/chen20j.html

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2019)

    Google Scholar 

  5. Dolan, W.B., Brockett, C.: Automatically constructing a corpus of sentential paraphrases. In: Proceedings of the Third International Workshop on Paraphrasing (IWP2005) (2005). https://aclanthology.org/I05-5002

  6. Gao, T., Yao, X., Chen, D.: SimCSE: simple contrastive learning of sentence embeddings. In: Empirical Methods in Natural Language Processing (EMNLP) (2021)

    Google Scholar 

  7. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks (2016). https://doi.org/10.48550/ARXIV.1607.00653, https://arxiv.org/abs/1607.00653

  8. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  10. Houlsby, N., et al.: Parameter-efficient transfer learning for NLP (2019)

    Google Scholar 

  11. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, pp. 168–177. Association for Computing Machinery, New York (2004). https://doi.org/10.1145/1014052.1014073

  12. Jiang, H., Wang, R., Shan, S., Chen, X.: Transferable contrastive network for generalized zero-shot learning. CoRR abs/1908.05832 (2019). http://arxiv.org/abs/1908.05832

  13. Khosla, P., et al.: Supervised contrastive learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 18661–18673. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf

  14. Khosla, P., et al.: Supervised contrastive learning. arXiv preprint arXiv:2004.11362 (2020)

  15. Liu, L., Du, B., Fung, Y.R., Ji, H., Xu, J., Tong, H.: KompaRe: a knowledge graph comparative reasoning system. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021, pp. 3308–3318. Association for Computing Machinery, New York (2021)

    Google Scholar 

  16. Liu, L., Du, B., Ji, H., Zhai, C., Tong, H.: Neural-answering logical queries on knowledge graphs. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021, pp. 1087–1097. Association for Computing Machinery, New York (2021)

    Google Scholar 

  17. Liu, L., Hill, B., Du, B., Wang, F., Tong, H.: Conversational question answering with reformulations over knowledge graph. arXiv preprint arXiv:2312.17269 (2023)

  18. Liu, L., Ji, H., Xu, J., Tong, H.: Comparative reasoning for knowledge graph fact checking. In: 2022 IEEE International Conference on Big Data (Big Data) (2022)

    Google Scholar 

  19. Liu, L., Tong, H.: Knowledge graph reasoning and its applications. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 5813–5814 (2023)

    Google Scholar 

  20. Liu, L., et al.: Knowledge graph comparative reasoning for fact checking: problem definition and algorithms. Data Eng. 45, 19–38 (2022)

    Google Scholar 

  21. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach (2019)

    Google Scholar 

  22. Luo, Z., Xu, W., Liu, W., Bian, J., Yin, J., Liu, T.Y.: KGE-CL: contrastive learning of tensor decomposition based knowledge graph embeddings. In: Proceedings of the 29th International Conference on Computational Linguistics, pp. 2598–2607. International Committee on Computational Linguistics, Gyeongju (2022). https://aclanthology.org/2022.coling-1.229

  23. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 26. Curran Associates, Inc. (2013). https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

  24. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 6341–6350. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7213-poincare-embeddings-for-learning-hierarchical-representations.pdf

  25. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML 2011, pp. 809–816. Omnipress, Madison (2011)

    Google Scholar 

  26. Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts (2004). https://doi.org/10.48550/ARXIV.CS/0409058, https://arxiv.org/abs/cs/0409058

  27. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp. 115–124. Association for Computational Linguistics, Ann Arbor (2005). https://doi.org/10.3115/1219840.1219855, https://aclanthology.org/P05-1015

  28. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 701–710. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2623330.2623732

  29. Robinson, J., Chuang, C.Y., Sra, S., Jegelka, S.: Contrastive learning with hard negative samples (2021)

    Google Scholar 

  30. Saunshi, N., Ash, J., Goel, S.: Understanding contrastive learning requires incorporating inductive biases. arXiv (2022)

    Google Scholar 

  31. Saunshi, N., Plevrakis, O., Arora, S., Khodak, M., Khandeparkar, H.: A theoretical analysis of contrastive unsupervised representation learning. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 5628–5637. PMLR (2019). https://proceedings.mlr.press/v97/saunshi19a.html

  32. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642. Association for Computational Linguistics, Seattle (2013). https://aclanthology.org/D13-1170

  33. Vaswani, A., et al.: Attention is all you need (2017)

    Google Scholar 

  34. Voorhees, E.M., Tice, D.M.: Building a question answering test collection. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2000, pp. 200–207. Association for Computing Machinery, New York (2000)

    Google Scholar 

  35. Wang, L., Zhao, W., Wei, Z., Liu, J.: SimKGC: simple contrastive knowledge graph completion with pre-trained language models. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Dublin (2022)

    Google Scholar 

  36. Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Lang. Resour. Eval. 39, 165–210 (2005)

    Article  Google Scholar 

  37. Yang, B., tau Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases (2015)

    Google Scholar 

  38. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. In: Advances in neural information processing systems, vol. 33, pp. 5812–5823 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinha Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Kim, J., Bansal, V. (2024). Can Contrastive Learning Refine Embeddings. In: Meroño Peñuela, A., et al. The Semantic Web. ESWC 2024. Lecture Notes in Computer Science, vol 14664. Springer, Cham. https://doi.org/10.1007/978-3-031-60626-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60626-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60625-0

  • Online ISBN: 978-3-031-60626-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics