Skip to main content

Integrating Domain Knowledge for Enhanced Concept Model Explainability in Plant Disease Classification

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2024)

Abstract

Deep learning-based plant disease detection has seen promising advancements, particularly in its remarkable ability to identify diseases through digital images. Nevertheless, these systems’ opacity and lack of transparency, which often offer no human-interpretable explanations for their predictions, raise concerns with respect to their robustness and reliability. While many methods have attempted post-hoc model explainability, few have specifically targeted the integration and impact of domain knowledge. In this study, we propose a novel framework that combines a tomato disease ontology with the concept explainability method Testing with Concept Activation Vectors (TCAV). Unlike the original TCAV method, which required users to gather diverse image concepts manually, our approach automates the creation of images based on relevant concepts used by domain experts in plant disease identification. This not only simplifies the concept collection and labelling process but also reduces the burden on users with limited domain knowledge, ultimately mitigating potential biases in concept selection. Besides automating the concept image generation for the TCAV method, our framework gives insights into the significance of disease-related concepts identified through the ontology in the deep learning model decision-making process. Consequently, our approach enhances the efficiency and interpretability of the model’s diagnostic capabilities, promising a more trustworthy and reliable disease detection model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/fusion-jena/XAI_TCAV_ONTO.

References

  1. Plantvillage. www.plantvillage.psu.edu. Accessed 13 Nov 2023

  2. Ahmad, A., Saraswat, D., El Gamal, A.: A survey on using deep learning techniques for plant disease diagnosis and recommendations for development of appropriate tools. Smart Agric. Technol. 3, 100083 (2023)

    Article  Google Scholar 

  3. Amara, J., Bouaziz, B., Algergawy, A.: A deep learning-based approach for banana leaf diseases classification. Datenbanksysteme für Business, Technologie und Web (BTW 2017)-Workshopband (2017)

    Google Scholar 

  4. Amara, J., König-Ries, B., Samuel, S.: Concept explainability for plant diseases classification. In: Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP, pp. 246–253 (2023)

    Google Scholar 

  5. Ammar, H.: Ontology for plant protection. https://sites.google.com/site/ppontology/home (2009)

  6. Blancard, D.: Tomato Diseases: Identification, Biology and Control: A Colour Handbook. CRC Press, Boca Raton (2012)

    Book  Google Scholar 

  7. Bourguin, G., Lewandowski, A., Bouneffa, M., Ahmad, A.: Towards ontologically explainable classifiers. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12892, pp. 472–484. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86340-1_38

    Chapter  Google Scholar 

  8. Chhetri, T.R., Hohenegger, A., Fensel, A., Kasali, M.A., Adekunle, A.A.: Towards improving prediction accuracy and user-level explainability using deep learning and knowledge graphs: a study on cassava disease. Expert Syst. Appl. 233, 120955 (2023)

    Article  Google Scholar 

  9. Chollet, F.: Deep learning with Python. Simon and Schuster (2021)

    Google Scholar 

  10. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240 (2006)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  12. Donadello, I., Dragoni, M.: SeXAI: introducing concepts into black boxes for explainable artificial intelligence. In: Proceedings of the Italian Workshop on Explainable Artificial Intelligence co-located with 19th International Conference of the Italian Association for Artificial Intelligence, XAI. it@ AIxIA 2020, Online Event, 25–26 November 2020, vol. 2742, pp. 41–54. CEUR-WS (2020)

    Google Scholar 

  13. Ge, Y., Xiao, Y., Xu, Z., Wang, X., Itti, L.: Contributions of shape, texture, and color in visual recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13672, pp. 369–386. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19775-8_22

    Chapter  Google Scholar 

  14. Ghorbani, A., Wexler, J., Zou, J.Y., Kim, B.: Towards automatic concept-based explanations. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  15. Gkoutos, G.V., Green, E.C., Mallon, A.M., Hancock, J.M., Davidson, D.: Using ontologies to describe mouse phenotypes. Genome Biol. 6, 1–10 (2005)

    Google Scholar 

  16. Hughes, D., et al.: An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:1511.08060 (2015)

  17. Jaiswal, P., et al.: Planteome: a resource for common reference ontologies and applications for plant biology (2017)

    Google Scholar 

  18. Jearanaiwongkul, W., Anutariya, C., Andres, F.: An ontology-based approach to plant disease identification system. In: Proceedings of the 10th International Conference on Advances in Information Technology, pp. 1–8 (2018)

    Google Scholar 

  19. Jearanaiwongkul, W., Anutariya, C., Racharak, T., Andres, F.: An ontology-based expert system for rice disease identification and control recommendation. Appl. Sci. 11(21), 10450 (2021)

    Article  Google Scholar 

  20. Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: International Conference on Machine Learning, pp. 2668–2677. PMLR (2018)

    Google Scholar 

  21. Koch, G.G.: One-sided and two-sided tests and \(\rho \) values. J. Biopharm. Stat. 1(1), 161–170 (1991)

    Article  Google Scholar 

  22. Molnar, C.: Interpretable machine learning. Lulu.com (2020)

    Google Scholar 

  23. Noy, N.F., et al.: Ontology development 101: a guide to creating your first ontology (2001)

    Google Scholar 

  24. Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: a large ontology for the semantic web and its applications. In: Working Notes of the AAAI-2002 Workshop on Ontologies and the Semantic Web, vol. 28, pp. 7–10 (2002)

    Google Scholar 

  25. Sarker, M.K., Xie, N., Doran, D., Raymer, M., Hitzler, P.: Explaining trained neural networks with semantic web technologies: first steps. arXiv preprint arXiv:1710.04324 (2017)

  26. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)

  27. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825 (2017)

  28. de Sousa Ribeiro, M., Leite, J.: Aligning artificial neural networks and ontologies towards explainable AI. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 4932–4940 (2021)

    Google Scholar 

  29. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  30. Tjoa, E., Khok, H.J., Chouhan, T., Guan, C.: Enhancing the confidence of deep learning classifiers via interpretable saliency maps. Neurocomputing 562, 126825 (2023)

    Article  Google Scholar 

  31. Van Dijk, M., Morley, T., Rau, M.L., Saghai, Y.: A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2(7), 494–501 (2021)

    Article  Google Scholar 

  32. Wakchaure, M., Patle, B., Mahindrakar, A.: Application of AI techniques and robotics in agriculture: a review. Artif. Intell. Life Sci. 100057 (2023)

    Google Scholar 

  33. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  34. Zhou, B., Sun, Y., Bau, D., Torralba, A.: Interpretable basis decomposition for visual explanation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 119–134 (2018)

    Google Scholar 

Download references

Acknowledgement

Supported by the Carl Zeiss Foundation (project ‘A Virtual Werkstatt for Digitization in the Sciences (K3)’ within the scope of the programline ‘Breakthroughs: Exploring Intelligent Systems for Digitization - explore the basics, use applications’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihen Amara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amara, J., Samuel, S., König-Ries, B. (2024). Integrating Domain Knowledge for Enhanced Concept Model Explainability in Plant Disease Classification. In: Meroño Peñuela, A., et al. The Semantic Web. ESWC 2024. Lecture Notes in Computer Science, vol 14664. Springer, Cham. https://doi.org/10.1007/978-3-031-60626-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60626-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60625-0

  • Online ISBN: 978-3-031-60626-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics