Skip to main content

SCOOP All the Constraints’ Flavours for Your Knowledge Graph

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2024)

Abstract

Creating SHACL shapes for the validation of RDF graphs is a non-trivial endeavor. Automated shape extraction systems typically derive SHACL shapes from RDF graphs, and thus, their effectiveness is inherently influenced by the size and complexity of the RDF graph. However, these systems often overlook the constraints imposed by individual artifacts, although RDF graphs are often constructed by applying ontology terms to heterogeneous data. Only a few systems extract SHACL shapes from either the data schema or the ontology, leading, in either case, to limited or incomplete constraints. We propose SCOOP, a framework that exploits all artifacts associated with the construction of an RDF graph, i.e. data schemas, ontologies, and mapping rules, and integrates the SHACL shapes extracted from each artifact into a unified shapes graph. We applied our approach to real-world use cases and experimental results showed that SCOOP outperforms systems that extract SHACL shapes from RDF graphs, generating more than double the types of constraints than those systems, and effectively identifying missing and erroneous RDF triples during the validation process.

Resource type: Software Framework — License: Apache-2.0

DOI: https://doi.org/10.5281/zenodo.10280346

URL: https://github.com/dtai-kg/SCOOP

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/dtai-kg/SCOOP.

  2. 2.

    The mapping rules will be publicly available soon by ERA (era.europa.eu/).

References

  1. Arndt, N.: SHACLGEN. https://github.com/AKSW/shaclgen. Accessed 20 Sept 2023

  2. Bock, C., et al.: OWL 2 Web Ontology Language – Structural Specification and Functional-Style Syntax, 2nd edn. Recommendation, World Wide Web Consortium (W3C) (2012). http://www.w3.org/TR/owl2-syntax/

  3. Boneva, I., Dusart, J., Fernández Alvarez, D., Gayo, J.E.L.: Shape designer for ShEx and SHACL constraints. In: Proceedings of the ISWC 2019 Satellite Tracks (Poster & Demonstrations, Industry, and Outrageous Ideas), vol. 2456, pp. 269–272. CEUR (2019)

    Google Scholar 

  4. Cimmino, A.: Astrea. https://github.com/oeg-upm/astrea. Accessed 20 Sept 2023

  5. Cimmino, A., Fernández-Izquierdo, A., García-Castro, R.: Astrea: automatic generation of SHACL shapes from ontologies. In: Harth, A., et al. (eds.) ESWC 2020. LNCS, vol. 12123, pp. 497–513. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49461-2_29

    Chapter  Google Scholar 

  6. Comelli, T.: JS2SHACL - JSON schema to SHACL conversor. https://github.com/ThiagoCComelli/JS2SHACL-JSON-Schema-to-SHACL-conversor. Accessed 20 Sept 2023

  7. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. Working group recommendation, World Wide Web Consortium (W3C) (2012). http://www.w3.org/TR/r2rml/

  8. Delva, T.: RML2SHACL. https://github.com/RMLio/RML2SHACL. Accessed 20 Sept 2023

  9. Delva, T., Smedt, B.D., Min Oo, S., Assche, D.V., Lieber, S., Dimou, A.: RML2SHACL: RDF generation taking shape. In: Proceedings of the 11th on Knowledge Capture Conference, pp. 153–160. ACM (2021). https://doi.org/10.1145/3460210.3493562

  10. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: Proceedings of the 7th Workshop on Linked Data on the Web, vol. 1184. CEUR Workshop Proceedings (2014)

    Google Scholar 

  11. Duan, X.: XSD2SHACL (2023). https://doi.org/10.5281/zenodo.8318452. Accessed 20 Sept 2023

  12. Duan, X., Chaves-Fraga, D., Dimou, A.: XSD2SHACL: capturing RDF constraints from XML schema. In: Proceedings of the 12th Knowledge Capture Conference 2023, K-CAP 2023, pp. 214–222. Association for Computing Machinery (2023). https://doi.org/10.1145/3587259.3627565

  13. Ekaputra, F.J., et al.: Describing and organizing semantic web and machine learning systems in the SWeMLS-KG. In: Pesquita, C., et al. (eds.) ESWC 2023. LNCS, vol. 13870, pp. 372–389. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33455-9_22

    Chapter  Google Scholar 

  14. European Union Agency for Railways: ERA_vocabulary. https://data-interop.era.europa.eu/era-vocabulary/. Accessed 20 Sept 2023

  15. Fallside, D., Walmsley, P.: XML Schema Part 0: Primer Second Edition. Recommendation, W3C (2004). https://www.w3.org/TR/xmlschema-0/

  16. Felin, R., Faron, C., Tettamanzi, A.G.B.: A framework to include and exploit probabilistic information in SHACL validation reports. In: Pesquita, C., et al. (eds.) ESWC 2023. LNCS, vol. 13870, pp. 91–104. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33455-9_6

    Chapter  Google Scholar 

  17. Fernández-Álvarez, D., García-González, H., Frey, J., Hellmann, S., Gayo, J.E.L.: Inference of latent shape expressions associated to DBpedia ontology. In: Proceedings of the ISWC 2018 Posters & Demonstrations, Industry and Blue Sky Ideas Tracks Co-Located with 17th International Semantic Web Conference (ISWC 2018), vol. 2180. CEUR Workshop Proceedings (2018)

    Google Scholar 

  18. Fernandez-Álvarez, D., Labra-Gayo, J.E., Gayo-Avello, D.: Automatic extraction of shapes using sheXer. Knowl.-Based Syst. 238, 107975 (2022). https://doi.org/10.1016/j.knosys.2021.107975

  19. Fernández-Álvarez, D.: sheXer. https://github.com/DaniFdezAlvarez/shexer. Accessed 10 Nov 2023

  20. Francart, T.: OWL2SHACL. https://github.com/sparna-git/owl2shacl. Accessed 10 Nov 2023

  21. Garcia-Gonzalez, H., Labra-Gayo, J.E.: XMLSchema2ShEx: converting XML validation to RDF validation. Semant. Web 11(2), 235–253 (2020)

    Article  Google Scholar 

  22. Ghiasnezhad Omran, P., Taylor, K., Rodríguez Méndez, S., Haller, A., et al.: Towards SHACL learning from knowledge graphs. In: Proceedings of the ISWC 2020 Demos and Industry Tracks: From Novel Ideas to Industrial Practice Co-Located with 19th International Semantic Web Conference (ISWC 2020), vol. 2721, pp. 94–99. CEUR Workshop Proceedings (2020)

    Google Scholar 

  23. Pandit, H.J., O’Sullivan, D., Lewis, D.: Using ontology design patterns to define SHACL shapes. In: 9th Workshop on Ontology Design and Patterns (WOP 2018), vol. 2195, pp. 67–71. CEUR-WS, Monterey (2018)

    Google Scholar 

  24. Heyvaert, P., Meester, B.D., et al.: RMLMapper-Java. https://github.com/RMLio/rmlmapper-java. Accessed 20 Sept 2023

  25. Iglesias-Molina, A., et al.: The RML ontology: a community-driven modular redesign after a decade of experience in mapping heterogeneous data to RDF. In: Payne, T.R., et al. (eds.) ISWC 2023, Part II. LNCS, vol. 14266, pp. 152–175. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-47243-5_9

    Chapter  Google Scholar 

  26. Knublauch, H., Kontokostas, D.: SHACL-SHACL. http://www.w3.org/ns/shacl-shacl#. Accessed 01 Dec 2023

  27. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). Recommendation, W3C (2017). https://www.w3.org/TR/shacl/

  28. Mihindukulasooriya, N., Rashid, M.R.A., Rizzo, G., Garcia-Castro, R., Corcho, O., Torchiano, M.: RDF shape induction using knowledge base profiling. In: Proceedings of the 33rd ACM/SIGAPP Symposium on Applied Computing (2017)

    Google Scholar 

  29. Pandit, H.J., O’Sullivan, D., Lewis, D.: Using ontology design patterns to define SHACL shapes. In: Proceedings of the 9th Workshop on Ontology Design and Patterns (WOP 2018) Co-Located with 17th International Semantic Web Conference (ISWC 2018), vol. 2195, pp. 67–71. CEUR (2018)

    Google Scholar 

  30. Rabbani, K.: Quality shapes extraction (QSE). https://github.com/dkw-aau/qse. Accessed 20 Sept 2023

  31. Rabbani, K., Lissandrini, M., Hose, K.: Extraction of validating shapes from very large knowledge graphs [extended version]

    Google Scholar 

  32. Rabbani, K., Lissandrini, M., Hose, K.: SHACL and ShEx in the wild: a community survey on validating shapes generation and adoption. In: Companion Proceedings of the Web Conference 2022, WWW 2022, pp. 260–263. Association for Computing Machinery (2022). https://doi.org/10.1145/3487553.3524253

  33. Rabbani, K., Lissandrini, M., Hose, K.: Extraction of validating shapes from very large knowledge graphs. Proc. VLDB Endow. 16(5), 1023–1032 (2023)

    Article  Google Scholar 

  34. Rabbani, K., Lissandrini, M., Hose, K.: SHACTOR: improving the quality of large-scale knowledge graphs with validating shapes. In: Proceedings of the 2023 International Conference on Management of Data (SIGMOD-Companion 2023), pp. 151–154. Association for Computing Machinery (2023). https://doi.org/10.1145/3555041.3589723

  35. The RINF: RINF: Railway infrastructure register. https://www.rinf-ch.ch/. Accessed 01 Dec 2023

  36. The RINF: RINF XML Schema v1.5. https://www.era.europa.eu/domains/registers/rinf_en. Accessed 01 Dec 2023

  37. Sommer, A., Car, N.: pySHACL (2022). https://doi.org/10.5281/zenodo.4750840. https://github.com/RDFLib/pySHACL

  38. Spahiu, B., Maurino, A., Palmonari, M.: Towards improving the quality of knowledge graphs with data-driven ontology patterns and SHACL. In: Workshop on Ontology Design Patterns (WOP) at ISWC (Best Workshop Papers). CEUR Workshop Proceedings, vol. 2195, pp. 52–66. CEUR (2018)

    Google Scholar 

  39. Thapa, R.B., Giese, M.: A source-to-target constraint rewriting for direct mapping. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 21–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_2

    Chapter  Google Scholar 

Download references

Acknowledgement

Xuemin Duan and Anastasia Dimou are partially supported by Flanders Make, the research centre for the manufacturing industry, and the Flanders innovation and entrepreneurship (VLAIO) through the KG3D project. David Chaves-Fraga is funded by the Galician Ministry of Education, University and Professional Training and the European Regional Development Fund (ERDF/FEDER program) through grants ED431C2018/29 and ED431G2019/04. The resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemin Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duan, X., Chaves-Fraga, D., Derom, O., Dimou, A. (2024). SCOOP All the Constraints’ Flavours for Your Knowledge Graph. In: Meroño Peñuela, A., et al. The Semantic Web. ESWC 2024. Lecture Notes in Computer Science, vol 14665. Springer, Cham. https://doi.org/10.1007/978-3-031-60635-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60635-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60634-2

  • Online ISBN: 978-3-031-60635-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics