Skip to main content

The Sandwich-Lemma: The Recursive Structure of Super-Syntonic and Super-Diatonic Automorphisms

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14639))

Included in the following conference series:

  • 325 Accesses

Abstract

In the context of the transformational modelling of Pairwise Well-Formed (PWWF) modes, we study transformations \(\sigma _f\) and \(\tau _g\) on four letters abcd, which we call super-syntonic and super-diatonic morphisms, respectively. They are constructed from underlying syntonic and diatonic morphisms f and g on two letters ab. From f and g, which are instances of Sturmian morphisms, one also constructs the Well-Formed (WF) syntonic and diatonic projections of the PWWF mode in question. From a super-syntonic morphism \(\sigma _f\) one obtains the PWWF authentic triadic mode \(\pi _{d \rightarrow a}(\sigma _f(c)|\sigma _f(b)||\sigma _f(a))\) and the PWWF plagal triadic mode \(\pi _{d \rightarrow a}(\sigma _f(d)||\sigma _f(c)|\sigma _f(b))\). In Sect. 2 we complete an earlier investigation by proving that the kaleidoscope maps \(\sigma \) and \(\tau \) are monoid homomorphisms, i.e. \(\sigma _{f_1 f_2} = \sigma _{f_1} \sigma _{f_2}\) and \(\tau _{g_1g_2} = \tau _{g_1} \tau _{g_2}\). In Sect. 3 we show that the recursive “sandwich” construction of syntonic and diatonic morphisms can be lifted to the level of super-syntonic and super-diatonic morphisms. This result enables us to show, that super-syntonic and super-diatonic morphisms, which are constructed in this way, are automorphisms of the free group \(F_4\) with four generators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There is one singular type PWWF scale with seven notes whose step interval pattern is abacaba, where all three step intervals are of different multiplicities, which is exemplified by the “Hungarian minor” scale. It is not in the scope of this article and we skip the attribute non-singular.

  2. 2.

    For a subset X of monoid morphisms (either of \(\{a, b\}^*\) or \(\{a, b, c, d\}^*\)) let \(\left\langle X\right\rangle \) denote the monoid generated by X.

References

  1. Bulgakova, D.V., Buzhinsky, N., Goncharov, Y.O.: On balanced and abelian properties of circular words over a ternary alphabet ArXiv:2012:15818, WORDS 2021 (2021)

  2. Chuman, Y.: Generators and relations of \(\varGamma {_0}(N)\). Kyoto J. Math. 13(2), 381–390 (1973)

    Google Scholar 

  3. Clampitt, D.: Pairwise Well-Formed Scales: Structural and Transformational Properties. Ph.D. diss, SUNY at Buffalo (1997)

    Google Scholar 

  4. Clampitt, D.: Mathematical and musical properties of pairwise well-formed scales. In: Klouche, T., Noll, T. (eds.) MCM 2007. CCIS, vol. 37, pp. 464–468. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04579-0_46

    Chapter  Google Scholar 

  5. Clampitt, D., Noll, T.: Modes, the height-width duality, and Handschin’s tone character. Music Theory Online 17(1) (2011). http://www.mtosmt.org/issues/mto.11.17.1/mto.11.17.1.clampitt_and_noll.html

  6. De Luca, A.: Sturmian words: structure, combinatorics, and their arithmetics. Theor. Comput. Sci. 183, 45–83 (1997)

    Google Scholar 

  7. Graham, R.L.: Covering the positive integers by disjoint sets of the form \(\{[n\alpha + \beta ]: n=1, 2, \dots \}\). J. Comb. Theory (A) 15, 354–358 (1973)

    Article  MathSciNet  Google Scholar 

  8. Kassel, C., Reutenauer, C.: Sturmian morphisms, the braid group \(B_4\), Christoffel words and bases of \(F_2\) (2005). https://doi.org/10.48550/arXiv.math/0507219

  9. Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Springer, New York (1984)

    Book  Google Scholar 

  10. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  11. Nielsen, J.: Die Isomorphismengruppe der freien Gruppen. Math. Ann. 33, 169–209 (1924)

    Article  MathSciNet  Google Scholar 

  12. Noll, T., Clampitt, D.: Kaleidoscope substitutions and pairwise well-formed modes: Major-Minor duality transformationally revisited. J. Math. Music 12(3) (2018)

    Google Scholar 

  13. Noll, T., Clampitt, D.: Exploring the syntonic side of major-minor tonality. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds.) MCM 2019. LNCS (LNAI), vol. 11502, pp. 125–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21392-3_10

    Chapter  Google Scholar 

  14. Noll, T., Clampitt, D.: Transformations for pairwise well-formed modes. In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds.) MCM 2022. LNCS, vol. 13267, pp. 140–152. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07015-0_12

    Chapter  Google Scholar 

  15. Paquin, G., Reutenauer, C.: On the superimposition of Christoffel words. Theoret. Comput. Sci. 412, 402–418 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Noll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noll, T., Clampitt, D., Montiel, M. (2024). The Sandwich-Lemma: The Recursive Structure of Super-Syntonic and Super-Diatonic Automorphisms. In: Noll, T., Montiel, M., Gómez, F., Hamido, O.C., Besada, J.L., Martins, J.O. (eds) Mathematics and Computation in Music. MCM 2024. Lecture Notes in Computer Science, vol 14639. Springer, Cham. https://doi.org/10.1007/978-3-031-60638-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60638-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60637-3

  • Online ISBN: 978-3-031-60638-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics