Abstract
In the context of the transformational modelling of Pairwise Well-Formed (PWWF) modes, we study transformations \(\sigma _f\) and \(\tau _g\) on four letters a, b, c, d, which we call super-syntonic and super-diatonic morphisms, respectively. They are constructed from underlying syntonic and diatonic morphisms f and g on two letters a, b. From f and g, which are instances of Sturmian morphisms, one also constructs the Well-Formed (WF) syntonic and diatonic projections of the PWWF mode in question. From a super-syntonic morphism \(\sigma _f\) one obtains the PWWF authentic triadic mode \(\pi _{d \rightarrow a}(\sigma _f(c)|\sigma _f(b)||\sigma _f(a))\) and the PWWF plagal triadic mode \(\pi _{d \rightarrow a}(\sigma _f(d)||\sigma _f(c)|\sigma _f(b))\). In Sect. 2 we complete an earlier investigation by proving that the kaleidoscope maps \(\sigma \) and \(\tau \) are monoid homomorphisms, i.e. \(\sigma _{f_1 f_2} = \sigma _{f_1} \sigma _{f_2}\) and \(\tau _{g_1g_2} = \tau _{g_1} \tau _{g_2}\). In Sect. 3 we show that the recursive “sandwich” construction of syntonic and diatonic morphisms can be lifted to the level of super-syntonic and super-diatonic morphisms. This result enables us to show, that super-syntonic and super-diatonic morphisms, which are constructed in this way, are automorphisms of the free group \(F_4\) with four generators.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
There is one singular type PWWF scale with seven notes whose step interval pattern is abacaba, where all three step intervals are of different multiplicities, which is exemplified by the “Hungarian minor” scale. It is not in the scope of this article and we skip the attribute non-singular.
- 2.
For a subset X of monoid morphisms (either of \(\{a, b\}^*\) or \(\{a, b, c, d\}^*\)) let \(\left\langle X\right\rangle \) denote the monoid generated by X.
References
Bulgakova, D.V., Buzhinsky, N., Goncharov, Y.O.: On balanced and abelian properties of circular words over a ternary alphabet ArXiv:2012:15818, WORDS 2021 (2021)
Chuman, Y.: Generators and relations of \(\varGamma {_0}(N)\). Kyoto J. Math. 13(2), 381–390 (1973)
Clampitt, D.: Pairwise Well-Formed Scales: Structural and Transformational Properties. Ph.D. diss, SUNY at Buffalo (1997)
Clampitt, D.: Mathematical and musical properties of pairwise well-formed scales. In: Klouche, T., Noll, T. (eds.) MCM 2007. CCIS, vol. 37, pp. 464–468. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04579-0_46
Clampitt, D., Noll, T.: Modes, the height-width duality, and Handschin’s tone character. Music Theory Online 17(1) (2011). http://www.mtosmt.org/issues/mto.11.17.1/mto.11.17.1.clampitt_and_noll.html
De Luca, A.: Sturmian words: structure, combinatorics, and their arithmetics. Theor. Comput. Sci. 183, 45–83 (1997)
Graham, R.L.: Covering the positive integers by disjoint sets of the form \(\{[n\alpha + \beta ]: n=1, 2, \dots \}\). J. Comb. Theory (A) 15, 354–358 (1973)
Kassel, C., Reutenauer, C.: Sturmian morphisms, the braid group \(B_4\), Christoffel words and bases of \(F_2\) (2005). https://doi.org/10.48550/arXiv.math/0507219
Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Springer, New York (1984)
Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)
Nielsen, J.: Die Isomorphismengruppe der freien Gruppen. Math. Ann. 33, 169–209 (1924)
Noll, T., Clampitt, D.: Kaleidoscope substitutions and pairwise well-formed modes: Major-Minor duality transformationally revisited. J. Math. Music 12(3) (2018)
Noll, T., Clampitt, D.: Exploring the syntonic side of major-minor tonality. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds.) MCM 2019. LNCS (LNAI), vol. 11502, pp. 125–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21392-3_10
Noll, T., Clampitt, D.: Transformations for pairwise well-formed modes. In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds.) MCM 2022. LNCS, vol. 13267, pp. 140–152. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07015-0_12
Paquin, G., Reutenauer, C.: On the superimposition of Christoffel words. Theoret. Comput. Sci. 412, 402–418 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Noll, T., Clampitt, D., Montiel, M. (2024). The Sandwich-Lemma: The Recursive Structure of Super-Syntonic and Super-Diatonic Automorphisms. In: Noll, T., Montiel, M., Gómez, F., Hamido, O.C., Besada, J.L., Martins, J.O. (eds) Mathematics and Computation in Music. MCM 2024. Lecture Notes in Computer Science, vol 14639. Springer, Cham. https://doi.org/10.1007/978-3-031-60638-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-60638-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60637-3
Online ISBN: 978-3-031-60638-0
eBook Packages: Computer ScienceComputer Science (R0)