Skip to main content

Hidden Categories: A New Perspective on Lewin’s Generalized Interval Systems and Klumpenhouwer Networks

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2024)

Abstract

In this work we provide a categorical formalization of several constructions found in transformational music theory. We first revisit David Lewin’s construction of a Generalized Interval System (GIS) to show that even a subset of the GIS conditions already implies a sequence of functors between categories. When all the conditions in Lewin’s definition are fullfilled, this sequence involves the category of elements \(\int _\textbf{G} S\) for the group action \(S :\textbf{G} \rightarrow \textbf{Sets}\) implied by the GIS structure. By focusing on the role played by categories of elements in such a context, we reformulate previous definitions of transformational networks in a \(\textbf{Cat}\)-based diagrammatic perspective, and present a new definition of categorical transformational networks, or CT-Nets, in more general musical categories. We show how such an approach provides a bridge between algebraic, geometrical, and graph-theoretical approaches in transformational music analysis. We end with a discussion on the new perspectives opened by such a formalization of transformational theory, in particular with respect to \(\textbf{Rel}\)-based transformational networks which occur in well-known music-theoretical constructions such as Douthett’s and Steinbach’s Cube Dance.

A. Popoff—Independent Researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    By an abuse of notation, for a given group G, we will notate throughout this paper its corresponding single-object category as \(\textbf{G}\). All functors are assumed to be covariant.

  2. 2.

    In the particular case of a group action, the category of elements \(\int _\textbf{G} S\) is also called the action groupoid. As discussed in the next section, this paper considers more general cases and we thus retain “category of elements” as a common unifying term.

  3. 3.

    During the redaction of this manuscript, the authors have been made aware by Dmitri Tymoczko of his current work on groupoids. Category of elements are encountered as a common point between his approach, rooted in geometrical and topological considerations, and ours, which stems from algebraic ones.

References

  1. Bénabou, J.: Les distributeurs. Université Catholique de Louvain, Institut de Mathématique Pure et Appliquée, Technical report (1973)

    Google Scholar 

  2. Cohn, R.: Weitzmann’s regions, my cycles, and Douthett’s dancing cubes. Music Theory Spectr. 22(1), 89–103 (2000). http://www.jstor.org/stable/745854

  3. Cohn, R.: Audacious Euphony: Chromaticism and the Triad’s Second Nature. Oxford University Press, Oxford (2012)

    Google Scholar 

  4. Douthett, J., Steinbach, P.: Parsimonious graphs: a study in parsimony, contextual transformations, and modes of limited transposition. J. Music Theory 42(2), 241–263 (1998). http://www.jstor.org/stable/843877

  5. Fiore, T.M., Noll, T., Satyendra, R.: Morphisms of generalized interval systems and \(PR\)-groups. J. Math. Music 7(1), 3–27 (2013). https://doi.org/10.1080/17459737.2013.785724

    Article  MathSciNet  Google Scholar 

  6. Hook, J.: Uniform triadic transformations. J. Music Theory 46(1/2), 57–126 (2002). http://www.jstor.org/stable/4147678

  7. Klumpenhouwer, H.: A Generalized Model of Voice-Leading for Atonal Music. Ph.D. thesis, Harvard University (1991)

    Google Scholar 

  8. Klumpenhouwer, H.: The inner and outer automorphisms of pitch-class inversion and transposition: some implications for analysis with Klumpenhouwer networks. Intégral 12, 81–93 (1998). http://www.jstor.org/stable/40213985

  9. Kolman, O.: Transfer principles for generalized interval systems. Perspect. New Music 42(1), 150–189 (2004)

    MathSciNet  Google Scholar 

  10. Lewin, D.: Generalized Music Intervals and Transformations. Yale University Press, New Haven (1987)

    Google Scholar 

  11. Lewin, D.: Klumpenhouwer networks and some isographies that involve them. Music Theory Spectr. 12(1), 83–120 (1990)

    Article  Google Scholar 

  12. Lewin, D.: Musical Form and Transformation. Oxford University Press, Oxford (2007)

    Google Scholar 

  13. Mazzola, G.: Gruppen und Kategorien in der Musik. Heldermann (1985)

    Google Scholar 

  14. Mazzola, G.: Geometrie der Töne : Elemente der mathematischen Musiktheorie. Birkhäuser (1990)

    Google Scholar 

  15. Mazzola, G., et al.: The Topos of Music: Geometric Logic of Concepts, Theory, and Performance. Birkhäuser Verlag, Basel (2002). https://doi.org/10.1007/978-3-0348-8141-8

  16. Mazzola, G., Andreatta, M.: From a categorical point of view: K-Nets as limit denotators. Perspect. New Music 44(2), 88–113 (2006). http://www.jstor.org/stable/25164629

  17. Mazzola, G., Andreatta, M.: Diagrams, gestures and formulae in music. J. Math. Music 1(3), 199–200 (2007). https://doi.org/10.1080/17459730701774269

    Article  MathSciNet  Google Scholar 

  18. Piovan, L.A.: A Tonnetz model for pentachords. J. Math. Music 7(1), 29–53 (2013). https://doi.org/10.1080/17459737.2013.769637

    Article  MathSciNet  Google Scholar 

  19. Popoff, A.: On the use of relational presheaves in transformational music theory. J. Math. Music 16(1), 51–79 (2022). https://doi.org/10.1080/17459737.2020.1825845

    Article  MathSciNet  Google Scholar 

  20. Popoff, A., Agon, C., Andreatta, M., Ehresmann, A.: From K-Nets to PK-Nets: a categorical approach. Perspect. New Music 54(2), 5–63 (2016). https://doi.org/10.7757/persnewmusi.54.2.0005

  21. Popoff, A., Andreatta, M., Ehresmann, A.: A categorical generalization of klumpenhouwer networks. In: Collins, T., Meredith, D., Volk, A. (eds.) MCM 2015. LNCS (LNAI), vol. 9110, pp. 303–314. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20603-5_31

    Chapter  Google Scholar 

  22. Popoff, A., Andreatta, M., Ehresmann, A.: Relational poly-Klumpenhouwer networks for transformational and voice-leading analysis. J. Math. Music 12(1), 35–55 (2018). https://doi.org/10.1080/17459737.2017.1406011

    Article  MathSciNet  Google Scholar 

  23. Popoff, A., Andreatta, M., Ehresmann, A.: Groupoids and wreath products of musical transformations: a categorical approach from poly-klumpenhouwer networks. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds.) MCM 2019. LNCS (LNAI), vol. 11502, pp. 33–45. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21392-3_3

    Chapter  Google Scholar 

  24. Rahn, J.: Cool tools: Polysemic and non-commutative nets, subchain decompositions and cross-projecting pre-orders, object-graphs, chain-hom-sets and chain-label-hom-sets, forgetful functors, free categories of a net, and ghosts. J. Math. Music 1(1), 7–22 (2007)

    Google Scholar 

  25. Reenan, S., Bass, R.: Types and applications of \(p_{3,0}\) seventh-chord transformations in late nineteenth-century music. Music Theory Online 22(2) (2016)

    Google Scholar 

  26. Rockwell, J.: Birdcage flights: a perspective on inter-cardinality voice leading. Music Theory Online 15(5) (2009)

    Google Scholar 

  27. Sobociński, P.: Relational presheaves as labelled transition systems. In: Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 40–50. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32784-1_3

    Chapter  Google Scholar 

  28. Vuza, D.T.: Some mathematical aspects of David Lewin’s book generalized musical intervals and transformations. Perspect. New Music 26(1), 258–287 (1988)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Andrée Ehresmann for many fruitful discussions on this topic. We also thank the reviewers for their detailed and critical comments on the first version of this paper. We acknowledge the support by the lnterdisciplinary Thematic lnstitute CREAA, as part of the ITI 2021–2028 program of the Université de Strasbourg, the CNRS, and the Inserm (funded by IdEx Unistra ANR-10-IDEX-0002, and by SFRI-STRAT’US ANR-20-SFRI-0012 under the French Investments for the Future Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Popoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Popoff, A., Andreatta, M. (2024). Hidden Categories: A New Perspective on Lewin’s Generalized Interval Systems and Klumpenhouwer Networks. In: Noll, T., Montiel, M., Gómez, F., Hamido, O.C., Besada, J.L., Martins, J.O. (eds) Mathematics and Computation in Music. MCM 2024. Lecture Notes in Computer Science, vol 14639. Springer, Cham. https://doi.org/10.1007/978-3-031-60638-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60638-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60637-3

  • Online ISBN: 978-3-031-60638-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics