Abstract
Location-based augmented reality (AR) enables in situ visualization of geolocated media in the real world, usually based on latitude and longitude referencing only. By integrating 6DoF georeferenced photographs, they can be positioned along all three rotational axes (pitch, yaw, roll) in addition to the usual perpendicular translation axes (surge, heave, sway), resulting in data registered on all six mechanical degrees of freedom of movement of a rigid body in three-dimensional space. In this paper, we present an integration test of 6DoF georeferenced data from the Smapshot open API to the BiodivAR open authoring tool for location-based AR. While both projects are open source, their data is not interoperable, similarly to most citizen science (CS) projects. After mapping the data and importing it in a new augmented environment, it can be visualized in the mobile AR interface, at the locations specified by the georeferenced images. Visualizing historical photographs in the AR interface from the actual location where they were originally taken allows them to align with their original context, resulting in an eye-catching and impactful visualization. This contextual visualization of historical photographs informs and enriches their meaning, and allows viewers to quickly detect patterns and anomalies at a glance. We perform a basic qualitative evaluation of the visualization made possible by the combination of 6DoF georeferenced data and our authoring system, based on our own observations. We discuss the potential of this proof-of-concept to foster participation and understanding in citizen science and education, especially with regards to biodiversity monitoring and education.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
GBIF. https://www.gbif.org/
OGC GeoPose 1.0 data exchange standard. https://docs.ogc.org/is/21-056r11/21-056r11.html
Pl@ntnet. https://plantnet.org/
WebHome \(<\) CitizenScienceDWG \(<\) ogc public wiki. https://external.ogc.org/twiki_public/CitizenScienceDWG
Admiraal, W., Huizenga, J., Akkerman, S., Dam, G.T.: The concept of flow in collaborative game-based learning. Comput. Hum. Behav. 27(3), 1185–1194 (2011). https://doi.org/10.1016/j.chb.2010.12.013
Alnagrat, A., Ismail, R., Syed Idrus, S.Z.: A review of extended reality (XR) technologies in the future of human education: current trend and future opportunity. J. Hum. Reprod. Sci. 1, 81–96 (2022). https://doi.org/10.11113/humentech.v1n2.27
Arvola, M., Fuchs, I.E., Nyman, I., Szczepanski, A.: Mobile augmented reality and outdoor education. Built Environ. 47(2), 223–242 (2021). https://doi.org/10.2148/benv.47.2.223
Azuma, R.T.: The challenge of making augmented reality work outdoors. In: Ohta, Y., Tamura, H. (eds.) Mixed Reality, pp. 379–390. Springer Berlin Heidelberg, Berlin, Heidelberg (1999). https://doi.org/10.1007/978-3-642-87512-0_21
Bayr, U.: Quantifying historical landscape change with repeat photography: an accuracy assessment of geospatial data obtained through monoplotting. Int. J. Geogr. Inf. Sci. 35(10), 2026–2046 (2021). https://doi.org/10.1080/13658816.2021.1871910
Bloom, M.A., Holden, M., Sawey, A.T., Weinburgh, M.H.: Promoting the use of outdoor learning spaces by K-12 inservice science teachers through an outdoor professional development experience. In: Bodzin, A.M., Shiner Klein, B., Weaver, S. (eds.) The Inclusion of Environmental Education in Science Teacher Education, pp. 97–110. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-9222-9_7
Boboc, R.G., Duguleană, M., Voinea, G.D., Postelnicu, C.C., Popovici, D.M., Carrozzino, M.: Mobile augmented reality for cultural heritage: following the footsteps of ovid among different locations in Europe. Sustainability 11(4), 1167 (2019). https://doi.org/10.3390/su11041167
Bozzini, C., Conedera, M., Krebs, P.: A new monoplotting tool to extract georeferenced vector data and orthorectified raster data from oblique non-metric photographs. Int. J. Heritage Digit. Era 1, 499–518 (2012). https://doi.org/10.1260/2047-4970.1.3.499
Bressler, D.M., Bodzin, A.M.: A mixed methods assessment of students’ flow experiences during a mobile augmented reality science game. J. Comput. Assist. Learn. 29(6), 505–517 (2013). https://doi.org/10.1111/jcal.12008, https://onlinelibrary.wiley.com/doi/abs/10.1111/jcal.12008
de Carolis, B., Gena, C., Kuflik, T., Origlia, A., Raptis, G.: AVI-CH 2018: advanced visual interfaces for cultural Heritage, pp. 1–3, May 2018. https://doi.org/10.1145/3206505.3206597
Carrozzino, M., Voinea, G.D., Duguleană, M., Boboc, R.G., Bergamasco, M.: Comparing innovative XR systems in cultural heritage. A case study. Int. Arch. Photogrammetry Remote Sens. Spat. Inf. Sci. XLII-2-W11, 373–378 (2019). https://doi.org/10.5194/isprs-archives-XLII-2-W11-373-2019, https://isprs-archives.copernicus.org/articles/XLII-2-W11/373/2019/, conference Name: GEORES 2019\(<\)br\(>\)2nd International Conference of Geomatics and Restoration (Volume XLII-2/W11) - 8–10 May 2019, Milan, Italy Publisher: Copernicus GmbH
Chabloz, N.: LBAR.js. MIT (2022). https://github.com/MediaComem/LBAR.js
Challenor, J., Ma, M.: A review of augmented reality applications for history education and heritage visualisation. Multimodal Technol. Interact. 3(2), 39 (2019). https://doi.org/10.3390/mti3020039, https://www.mdpi.com/2414-4088/3/2/39, number: 2 Publisher: Multidisciplinary Digital Publishing Institute
Cheng, K.H., Tsai, C.C.: Affordances of augmented reality in science learning: suggestions for future research. J. Sci. Educ. Technol. 22(4), 449–462 (2013). https://doi.org/10.1007/s10956-012-9405-9, http://link.springer.com/10.1007/s10956-012-9405-9
Chiang, T.H.C., Yang, S.J.H., Hwang, G.J.: An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. J. Educ. Technol. Soc. 17(4), 352–365 (2014), http://www.jstor.org/stable/jeductechsoci.17.4.352, publisher: International Forum of Educational Technology & Society
Coltekin, A., Griffin, A., Robinson, A.: Visualizations (2021). https://doi.org/10.1093/obo/9780199874002-0224
Curran, K., Fisher, G., Crumlish, J.: OpenStreetMap. Int. J. Interact. Commun. Syst. Technol. 2, 69–78 (2012). https://doi.org/10.4018/ijicst.2012010105
Debandi, F., et al.: Enhancing cultural tourism by a mixed reality application for outdoor navigation and information browsing using immersive devices. IOP Conf. Ser. Mater. Sci. Eng. 364, 012048 (2018). https://doi.org/10.1088/1757-899X/364/1/012048, publisher: IOP Publishing
Dunleavy, M., Dede, C., Mitchell, R.: Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. J. Sci. Educ. Technol. 18(1), 7–22 (2009). https://doi.org/10.1007/s10956-008-9119-1
Geniet, F., Gouet-Brunet, V., Brédif, M.: ALEGORIA: joint multimodal search and spatial navigation into the geographic iconographic heritage. In: Proceedings of the 30th ACM International Conference on Multimedia, MM 2022, pp. 6982–6984. Association for Computing Machinery, New York, NY, USA, October 2022. https://doi.org/10.1145/3503161.3547746
Geroimenko, V.: Augmented reality in education: a new technology for teaching and learning. Springer International Publishing (2020)
González Vargas, J.C., Fabregat, R., Carrillo-Ramos, A., Jové, T.: Survey: using augmented reality to improve learning motivation in cultural heritage studies. Appl. Sci. 10(3), 897 (2020). https://doi.org/10.3390/app10030897, https://www.mdpi.com/2076-3417/10/3/897, number: 3 Publisher: Multidisciplinary Digital Publishing Institute
Haklay, M.: Citizen science and volunteered geographic information: overview and typology of participation. In: Sui, D., Elwood, S., Goodchild, M. (eds.) Crowdsourcing Geographic Knowledge: Volunteered Geographic Information (VGI) in Theory and Practice, pp. 105–122. Springer, Dordrecht (2013). https://doi.org/10.1007/978-94-007-4587-2_7
Ingensand, J., Lecorney, S., Blanc, N., Besse, M., Taylor, J., Rappo, D.: An open API for 3D-georeferenced historical pictures. Int. Arch. Photogrammetry, Remote Sens. Spat. Inf. Sci. XLVIII-4/W1-2022, 217–222 (2022). https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-217-2022, https://isprs-archives.copernicus.org/articles/XLVIII-4-W1-2022/217/2022/
Kaspar, M., Kieffer, D., Liu, Q.: Holographic mixed reality: an enhanced technology for visualizing and evaluating complex 3D geologic data, October 2023
Kye, B., Kim, Y.: Investigation of the relationships between media characteristics, presence, flow, and learning effects in augmented reality based learning. Int. J. Educ. Media Technol. 2(1) (2008). https://ijemt.org/index.php/journal/article/view/161
Lee, G., Duenser, A., Kim, S., Billinghurst, M.: CityViewAR: a mobile outdoor AR application for city visualization, November 2012. https://doi.org/10.1109/ISMAR-AMH.2012.6483989, pages: 64
Lotfian, M., Ingensand, J., Brovelli, M.A.: The partnership of citizen science and machine learning: benefits, risks, and future challenges for engagement, data collection, and data quality. Sustainability 13(14), 8087 (2021). https://doi.org/10.3390/su13148087, https://www.mdpi.com/2071-1050/13/14/8087, number: 14 Publisher: Multidisciplinary Digital Publishing Institute
Mercier, J., et al.: Impact of geolocation data on augmented reality usability: a comparative user test. Int. Arch. Photogrammetry Remote Sens. Spatial Inf. Sci. XLVIII-4/W7-2023, 133–140 (2023). https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-133-2023, https://isprs-archives.copernicus.org/articles/XLVIII-4-W7-2023/133/2023/
Mercier, J., Chabloz, N., Dozot, G., Ertz, O., Bocher, E., Rappo, D.: BiodivAR: a cartographic authoring tool for the visualization of geolocated media in augmented reality. ISPRS Int. J. Geo-Inf. 12(2), 61 (2023). https://doi.org/10.3390/ijgi12020061, https://www.mdpi.com/2220-9964/12/2/61
Miller-Rushing, A., Primack, R., Bonney, R.: The history of public participation in ecological research. Front. Ecol. Environ. 10(6), 285–290 (2012). https://doi.org/10.1890/110278, https://esajournals.onlinelibrary.wiley.com/doi/10.1890/110278
Neumann, R., Peitek, N., Cuadrado-Gallego, J.J.: GeoPointing on indoor maps: enhancing compass sensor accuracy to enable interactive digital object selection in smartphone-based map applications. In: Proceedings of the 10th ACM International Symposium on Mobility Management and Wireless Access, pp. 63–70. ACM, Paphos Cyprus, October 2012. https://doi.org/10.1145/2386995.2387006, https://dl.acm.org/doi/10.1145/2386995.2387006
Newman, G., et al.: Leveraging the power of place in citizen science for effective conservation decision making. Biol. Conserv. 208, 55–64 (2017). https://doi.org/10.1016/j.biocon.2016.07.019, https://www.sciencedirect.com/science/article/pii/S0006320716302841
Novakova, L., Pavlis, T.L.: Assessment of the precision of smart phones and tablets for measurement of planar orientations: a case study. J. Struct. Geol. 97, 93–103 (2017). https://doi.org/10.1016/j.jsg.2017.02.015, https://www.sciencedirect.com/science/article/pii/S0191814117300524
O’Shea, P.M., Dede, C., Cherian, M.: Research note: the results of formatively evaluating an augmented reality curriculum based on modified design principles. Int. J. Gaming Comput.-Mediat. Simul. (IJGCMS) 3(2), 57–66 (2011). https://doi.org/10.4018/jgcms.2011040104, https://www.igi-global.com/gateway/article/www.igi-global.com/gateway/article/54351, publisher: IGI Global
Papadopoulou, E.E., et al.: Geovisualization of the excavation process in the Lesvos petrified forest, greece using augmented reality. ISPRS Int. J. Geo-Inf. 9(6), 374 (2020). https://doi.org/10.3390/ijgi9060374, https://www.mdpi.com/2220-9964/9/6/374, number: 6 Publisher: Multidisciplinary Digital Publishing Institute
Peña-Rios, A., Hagras, H., Gardner, M., Owusu, G.: A type-2 fuzzy logic based system for augmented reality visualisation of georeferenced data. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8, July 2018. https://doi.org/10.1109/FUZZ-IEEE.2018.8491467, https://ieeexplore.ieee.org/abstract/document/8491467
Picaut, J., Fortin, N., Bocher, E., Petit, G., Aumond, P., Guillaume, G.: An open-science crowdsourcing approach for producing community noise maps using smartphones. Build. Environ. 148, 20–33 (2019). https://doi.org/10.1016/j.buildenv.2018.10.049, https://www.sciencedirect.com/science/article/pii/S0360132318306747
Produit, T., Ingensand, J.: 3D georeferencing of historical photos by volunteers. In: Mansourian, A., Pilesjö, P., Harrie, L., Van Lammeren, R. (eds.) Geospatial Technologies for All, pp. 113–128. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78208-9_6, http://link.springer.com/10.1007/978-3-319-78208-9_6, series Title: Lecture Notes in Geoinformation and Cartography
Purves, R.S., Edwardes, A., Fan, X., Hall, M., Tomko, M.: Automatically generating keywords for georeferenced images, April 2010. https://doi.org/10.5167/UZH-40067, https://www.zora.uzh.ch/id/eprint/40067, publisher: [object Object]
Rauschnabel, P.A., Rossmann, A., tom Dieck, M.C.: An adoption framework for mobile augmented reality games: The case of Pokémon Go. Comput. Hum. Behav. 76, 276–286 (2017). https://doi.org/10.1016/j.chb.2017.07.030, https://linkinghub.elsevier.com/retrieve/pii/S0747563217304521
Richter, F., Reitmann, S., Jung, B.: Integration of open geodata into virtual worlds. In: Proceedings of the 6th International Conference on Virtual and Augmented Reality Simulations, ICVARS 2022, pp. 9–13. Association for Computing Machinery, New York, NY, USA, August 2022. https://doi.org/10.1145/3546607.3546609, https://dl.acm.org/doi/10.1145/3546607.3546609
Ryokai, K., Agogino, A.: Off the paved paths: exploring nature with a mobile augmented reality learning tool. J. Mobile Hum. Comput. Interact. 5(2), 21–49 (2013). https://doi.org/10.4018/jmhci.2013040102, institution: Agogino, Alice: Department of Mechanical Engineering, School of Information, University of California-Berkley, Berkley, CA, U
Strasser, B.J., Baudry, J., Mahr, D., Sanchez, G., Tancoigne, E.: Citizen Science? Rethinking science and public participation. Sci. Technol. Stud. 52–76 (2018). https://doi.org/10.23987/sts.60425, https://sciencetechnologystudies.journal.fi/article/view/60425
Themistocleous, K.: The use of open data from social media for the creation of 3D georeferenced modeling. In: Fourth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2016), vol. 9688, pp. 254–259. SPIE, August 2016. https://doi.org/10.1117/12.2242804, https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9688/96880T/The-use-of-open-data-from-social-media-for-the/10.1117/12.2242804.full
Torresani, A., Rigon, S., Farella, E.M., Menna, F., Remondino, F.: Unveiling large-scale historical contents with v-slam and markerless mobile AR solutions. Int. Arch. Photogrammetry, Remote Sens. Spat. Inf. Sci. XLVI-M-1-2021, 761–768 (2021). https://doi.org/10.5194/isprs-archives-XLVI-M-1-2021-761-2021, https://isprs-archives.copernicus.org/articles/XLVI-M-1-2021/761/2021/isprs-archives-XLVI-M-1-2021-761-2021.html, conference Name: ICOMOS/ISPRS International Scientific Committee on Heritage Documentation (CIPA) \(<\)br\(>\) 28th CIPA Symposium “Great Learning & Digital Emotion & 28 August-1 September 2021, Beijing, China Publisher: Copernicus GmbH
Tscheu, F., Buhalis, D.: Augmented reality at cultural heritage sites. In: Inversini, A., Schegg, R. (eds.) Information and Communication Technologies in Tourism 2016, pp. 607–619. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28231-2_44
Ursyn, A., Rodrigues, J. (eds.): Interface Support for Creativity, Productivity, and Expression in Computer Graphics:. Advances in Multimedia and Interactive Technologies, IGI Global (2019). https://doi.org/10.4018/978-1-5225-7371-5, http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-7371-5
Wu, H., Lattuada, M., Morbidelli, M.: Dependence of fractal dimension of DLCA clusters on size of primary particles. Adv. Colloid Interface Sci. 195-196, 41–49 (2013). https://doi.org/10.1016/j.cis.2013.04.001, https://linkinghub.elsevier.com/retrieve/pii/S0001868613000353
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mercier, J., Bocher, E., Ertz, O. (2024). In Situ Visualization of 6DoF Georeferenced Historical Photographs in Location-Based Augmented Reality. In: Lotfian, M., Starace, L.L.L. (eds) Web and Wireless Geographical Information Systems. W2GIS 2024. Lecture Notes in Computer Science, vol 14673. Springer, Cham. https://doi.org/10.1007/978-3-031-60796-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-60796-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-60795-0
Online ISBN: 978-3-031-60796-7
eBook Packages: Computer ScienceComputer Science (R0)