Skip to main content

A Digital Twin Architecture for Intelligent Public Transportation Systems: A FIWARE-Based Solution

  • Conference paper
  • First Online:
Web and Wireless Geographical Information Systems (W2GIS 2024)

Abstract

Public transportation systems play a vital role for society, but they often fall short in addressing the dynamic needs of commuters. Intelligent Public Transportation Systems (IPTS) hold promise for enhancing efficiency and adapting to these evolving requirements. Digital twins (DT), virtual representations of real-world systems, can be leveraged to create dynamic replicas that guide real-time decision-making and optimization for IPTS. This paper examines the concept of digital twins and their potential for IPTS, highlighting the challenges and opportunities that must be addressed to fully capitalize on this technology. Moreover, a DT-based IPTS architecture is proposed leveraging on FIWARE Smart Data Models for data interoperability. Finally, a small real-world instance of the proposed architecture and data model is illustrated involving a bus-based IPTS where the DT technology is adopted to enable bus passenger demand prediction and bus scheduling update.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.sita.aero/pressroom/blog/digital-border-and-airport-technologies-smoothing-the-way-for-visitors-to-the-world-cup/.

  2. 2.

    https://ditto-oceandecade.org/use-cases/a-digital-twin-for-the-port-of-rotterdam-by-esri/.

  3. 3.

    https://www.fiware.org/smart-data-models/.

  4. 4.

    https://eclipse.dev/sumo/.

  5. 5.

    https://www.ptvgroup.com/en/products/ptv-vissim.

  6. 6.

    https://projects.eclipse.org/projects/iot.ditto.

  7. 7.

    https://www.fiware.org/.

  8. 8.

    https://learn.microsoft.com/en-us/azure/digital-twins/overview.

  9. 9.

    https://blogs.sw.siemens.com/insights-hub/.

  10. 10.

    https://github.com/fiware/catalogue.

  11. 11.

    https://www.fiware.org/2018/08/08/fiware-context-broker-launches-as-a-cef-building-block/.

  12. 12.

    Please note that JSON-LD @context is different from the concept of context-aware data system. Context can be defined as “any information that can be used to characterize the situation of an entity” [18], i.e., the state in which an entity is at a given time. Instead, the @context is used to define short-hand names that are part of JSON-LD payloads.

  13. 13.

    https://www.tmforum.org/.

  14. 14.

    https://iudx.org.in/.

  15. 15.

    https://oascities.org/.

  16. 16.

    https://github.com/smart-data-models/data-models.

  17. 17.

    Available at https://github.com/smart-data-models/dataModel.UrbanMobility, the data model has been adopted in the SynchroniCity European project https://cordis.europa.eu/project/id/732240.

  18. 18.

    General Transit Feed Specification is an open standard used by public transport agencies to publish their transit data in a format that can be consumed by a wide variety of software applications.

  19. 19.

    https://github.com/smart-data-models/dataModel.Transportation.

  20. 20.

    https://kurento.readthedocs.io/en/stable/.

  21. 21.

    https://fiware-orion.readthedocs.io/.

  22. 22.

    https://github.com/FIWARE/context.Orion-LD.

  23. 23.

    https://scorpio.readthedocs.io/en/latest/.

  24. 24.

    https://stellio.readthedocs.io/en/latest/.

  25. 25.

    https://github.com/FIWARE/mintaka.

  26. 26.

    https://quantumleap.readthedocs.io/.

  27. 27.

    https://fiware-cosmos-flink.readthedocs.io/.

  28. 28.

    https://fiware-cosmos-spark.readthedocs.io/.

  29. 29.

    https://fiware-perseo-fe.readthedocs.io/.

  30. 30.

    https://wirecloud.readthedocs.io/.

  31. 31.

    https://github.com/FIWARE/kong-plugins-fiware.

  32. 32.

    https://fiware-idm.readthedocs.io/.

  33. 33.

    https://fiware-pep-proxy.readthedocs.io/.

  34. 34.

    https://authzforce-ce-fiware.readthedocs.io/.

  35. 35.

    https://github.com/FIWARE/CanisMajor.

  36. 36.

    https://github.com/FIWARE-Blockchain/Taurus.

  37. 37.

    https://developers.google.com/transit/gtfs.

  38. 38.

    https://ngsildclient.readthedocs.io.

  39. 39.

    https://mims.oascities.org/basics/oasc-mims-introduction.

References

  1. Amato, F., Di Martino, S., Mazzocca, N., Nardone, D., Rocco di Torrepadula, F., Sannino, P.: Bus passenger load prediction: challenges from an industrial experience. In: Karimipour, F., Storandt, S. (eds.) W2GIS 2022. LNCS, vol. 13238, pp. 93–107. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06245-2_9

  2. Bao, L., Wang, Q., Jiang, Y.: Review of digital twin for intelligent transportation system. In: 2021 International Conference on Information Control, Electrical Engineering and Rail Transit (ICEERT), pp. 309–315 (2021). https://doi.org/10.1109/ICEERT53919.2021.00064

  3. Bin, Y., Zhongzhen, Y., Baozhen, Y.: Bus arrival time prediction using support vector machines. J. Intell. Transp. Syst. 10(4), 151–158 (2006)

    Article  Google Scholar 

  4. Cirillo, F., Solmaz, G., Berz, E.L., Bauer, M., Cheng, B., Kovacs, E.: A standard-based open source IoT platform: FIWARE. IEEE Internet Things Mag. 2(3), 12–18 (2019). https://doi.org/10.1109/IOTM.0001.1800022

    Article  Google Scholar 

  5. Conde, J., Munoz, J., Alonso, A., Lòpez-Pernas, S., Salvachua, J.: Modeling digital twin data and architecture: a building guide with FIWARE as enabling technology. IEEE Internet Comput. 26, 7–14 (2021). https://doi.org/10.1109/MIC.2021.3056923

  6. Conde, J., Munoz-Arcentales, A., Alonso, A., Huecas, G., Salvachùa, J.: Collaboration of digital twins through linked open data: architecture with FIWARE as enabling technology. IT Prof. 24(6), 41–46 (2022). https://doi.org/10.1109/MITP.2022.3224826

    Article  Google Scholar 

  7. Dasgupta, S., Rahman, M., Lidbe, A.D., Lu, W., Jones, S.L.: A transportation digital-twin approach for adaptive traffic control systems. CoRR abs/2109.10863 (2021). https://arxiv.org/abs/2109.10863

  8. Gavalas, D., et al.: Smart cities: recent trends, methodologies, and applications (2017)

    Google Scholar 

  9. Ghariani, N., Elkosantini, S., Darmoul, S., Ben Said, L.: A survey of simulation platforms for the assessment of public transport control systems. In: 2014 International Conference on Advanced Logistics and Transport (ICALT), pp. 85–90 (2014). https://doi.org/10.1109/ICAdLT.2014.6864088

  10. Jafari, M., Kavousi-Fard, A., Chen, T., Karimi, M.: A review on digital twin technology in smart grid, transportation system and smart city: challenges and future. IEEE Access 11, 17471–17484 (2023). https://doi.org/10.1109/ACCESS.2023.3241588

    Article  Google Scholar 

  11. Jenelius, E.: Data-driven bus crowding prediction based on real-time passenger counts and vehicle locations. In: 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MTITS2019) (2019)

    Google Scholar 

  12. Kale, A.: Collaboration of automotive, connected solutions and energy technologies for sustainable public transportation for Indian cities. In: 2019 IEEE Transportation Electrification Conference (ITEC-India), pp. 1–6. IEEE (2019)

    Google Scholar 

  13. Kim, K.M., Hong, S.P., Ko, S.J., Kim, D.: Does crowding affect the path choice of metro passengers? Transp. Res. Part A Policy Pract. 77, 292–304 (2015)

    Article  Google Scholar 

  14. Kirimtat, A., Krejcar, O., Kertesz, A., Tasgetiren, M.F.: Future trends and current state of smart city concepts: a survey. IEEE Access 8, 86448–86467 (2020)

    Article  Google Scholar 

  15. Kui, K., Schumann, R., Ivanjko, E.: A digital twin in transportation: real-time synergy of traffic data streams and simulation for virtualizing motorway dynamics. Adv. Eng. Inform. 55, 101858 (2023). https://doi.org/10.1016/j.aei.2022.101858. https://www.sciencedirect.com/science/article/pii/S1474034622003160

  16. Martínez, R., Pastor, J.A., Àlvarez, B., Iborra, A.: A testbed to evaluate the FIWARE-based IoT platform in the domain of precision agriculture. Sensors 16(11) (2016). https://www.mdpi.com/1424-8220/16/11/1979

  17. Megalingam, R.K., Raj, N., Soman, A.L., Prakash, L., Satheesh, N., Vijay, D.: Smart, public buses information system. In: 2014 International Conference on Communication and Signal Processing, pp. 1343–1347 (2014). https://doi.org/10.1109/ICCSP.2014.6950068

  18. Munoz-Arcentales, A., López-Pernas, S., Conde, J., Alonso, l., Salvachúa, J., Hierro, J.J.: Enabling context-aware data analytics in smart environments: an open source reference implementation. Sensors 21(21) (2021). https://doi.org/10.3390/s21217095. https://www.mdpi.com/1424-8220/21/21/7095

  19. Nie, L., Wang, X., Zhao, Q., Shang, Z., Feng, L., Li, G.: Digital twin for transportation big data: a reinforcement learning-based network traffic prediction approach. IEEE Trans. Intell. Transp. Syst., 1–11 (2023). https://doi.org/10.1109/TITS.2022.3232518

  20. Paiva, S., Ahad, M.A., Tripathi, G., Feroz, N., Casalino, G.: Enabling technologies for urban smart mobility: recent trends, opportunities and challenges. Sensors 21(6), 2143 (2021)

    Article  Google Scholar 

  21. Privat, G.: Guidelines for modelling with NGSI-LD (ETSI white paper) (2021)

    Google Scholar 

  22. Ramstedt, L., Krasemann, J.T., Davidsson, P.: Movement of people and goods. In: Edmonds, B., Meyer, R. (eds.) Simulating Social Complexity, pp. 651–665. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-540-93813-2_24

  23. Tirachini, A., Hensher, D.A., Rose, J.M.: Crowding in public transport systems: effects on users, operation and implications for the estimation of demand. Transp. Res. Part A Policy Pract. 53, 36–52 (2013)

    Article  Google Scholar 

  24. Tsai, T.H.: Self-evolutionary sibling models to forecast railway arrivals using reservation data. Eng. Appl. Artif. Intell. 96, 103960 (2020)

    Article  Google Scholar 

  25. Wang, P., Chen, X., Chen, J., Hua, M., Pu, Z.: A two-stage method for bus passenger load prediction using automatic passenger counting data. IET Intel. Transp. Syst. 15(2), 248–260 (2021)

    Article  Google Scholar 

  26. Wang, W., et al.: Introduction to digital twin technologies in transportation infrastructure management (TIM). In: Edmonds, B., Meyer, R. (eds.) Simulating Social Complexity. Understanding Complex Systems, pp. 1–25. Springer, Heidelberg (2024). https://doi.org/10.1007/978-981-99-5804-7_1

  27. Yu, B., Lam, W.H., Tam, M.L.: Bus arrival time prediction at bus stop with multiple routes. Transp. Res. Part C Emerg. Technol. 19(6), 1157–1170 (2011)

    Article  Google Scholar 

  28. Zear, A., Singh, P.K., Singh, Y.: Intelligent transport system: a progressive review (2016)

    Google Scholar 

  29. Zhang, J., et al.: A real-time passenger flow estimation and prediction method for urban bus transit systems. IEEE Trans. Intell. Transp. Syst. 18(11), 3168–3178 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Spoke 9 “Digital Society & Smart Cities” of ICSC - Centro Nazionale di Ricerca in High Performance-Computing, Big Data and Quantum Computing, funded by the European Union - NextGenerationEU (PNRR-HPC, CUP: E63C22000980007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franca Rocco di Torrepadula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Benedictis, A., Rocco di Torrepadula, F., Somma, A. (2024). A Digital Twin Architecture for Intelligent Public Transportation Systems: A FIWARE-Based Solution. In: Lotfian, M., Starace, L.L.L. (eds) Web and Wireless Geographical Information Systems. W2GIS 2024. Lecture Notes in Computer Science, vol 14673. Springer, Cham. https://doi.org/10.1007/978-3-031-60796-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60796-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60795-0

  • Online ISBN: 978-3-031-60796-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics