Skip to main content

Fractional-Order Sliding Mode Control: Methodologies and Applications

  • Book
  • © 2024

Overview

  • Present recent research on fractional-order sliding mode control and the applications in the linear motor
  • Shortens a gap in literature by solving some challenging problems of fractional-order sliding mode control
  • Presents some novel fractional-order sliding mode control schemes

Part of the book series: Studies in Systems, Decision and Control (SSDC, volume 532)

  • 1881 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook USD 129.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

About this book

This book delves deep into fractional-order control and fractional-order sliding mode techniques, addressing key challenges in the control design of linear motor systems and control for the deployment of space tethered systems. Innovative strategies such as adaptive fractional-order sliding mode control and fractional-order fuzzy sliding mode control schemes are devised to enhance system performance. Divided into three parts, it covers a brief view of fractional-order control strength in modeling and control, fractional-order sliding mode control of linear motor systems, and fractional-order sliding mode control for the deployment of space tethered systems. Each chapter offers valuable insights and solutions. Simulations and experiments validate the efficacy of these approaches, making this book essential for researchers, engineers, and practitioners in control systems and aerospace engineering.

Keywords

Table of contents (12 chapters)

  1. Brief View of Fractional-Order Control Strength in Modelling and Control

  2. Fractional-Order SMC of Linear Motor Systems

  3. Fractional-Order SMC for the Deployment of Space Tethered System

Authors and Affiliations

  • School of Astronautics, Harbin Institute of Technology, Harbin, China

    Guanghui Sun, Chengwei Wu, Xiaolei Li, Xiangyu Shao

  • School of Astronautics, Northwestern Polytechnical University, Xian, China

    Zhiqiang Ma

  • State Key Laboratory of Mechanics, Nanjing University of Aeronautics and Astronautics, Nanjing, China

    Shidong Xu

About the authors

Guanghui Sun received the B.S. degree in automation and the M.S. and Ph.D. degrees in control science and engineering from Harbin Institute of Technology, Harbin, China, in 2005, 2007, and 2010, respectively. He is currently a professor in the Department of Control Science and Engineering, Harbin Institute of Technology. His research interests include fractional-order systems, networked control systems, and sliding mode control.

Chengwei Wu received the B.S. degree in management from the Arts and Science College, Bohai University, Jinzhou, China, in 2013, the M.S. degree from Bohai University, in 2016, and the Ph.D. degree from Harbin Institute of Technology, China, 2021. From July 2015 to December 2015, he was a research assistant in the Department of Mechanical Engineering, The Hong Kong Polytechnic University. From 2019 to 2021, he was a joint Ph.D. student at Department of Cognitive Robotics, Delft University of Technology, Netherlands. He is currently an associate professor with the Harbin Institute of Technology, Harbin, China. His research interests include reinforcement learning, sliding mode control, and cyber-physical systems.

Xiaolei Li received the B.S. degree in automation from Inner Mongolia University, Inner Mongolia, China, in 2016, and the M.S. degree in control science and engineering from the Harbin Institute of Technology, Harbin, China, in 2018, respectively. He is currently an assistant professor with the School of Astronautics, Harbin Institute of Technology. His research interests include fractional-order systems, space tethered system, sliding mode control, and model predictive control.

Zhiqiang Ma received the B.S. degree and the M.S. degree in control engineering from Northwestern Polytechnical University, Xi’an, China, in 2011 and 2014, respectively, and the Ph.D. degree in control science and engineering from the Harbin Institute of Technology, Harbin, China, in 2018. He is currently an associate professor with the School of Astronautics, Northwestern Polytechnical University. His current research interests include nonlinear dynamics and control for tethered space system and robotic teleoperation.

Shidong Xu received the B.S. degree in automation from Northeast Forestry University, Harbin, China, in 2012, and the M.S. and Ph.D. degrees in control science and engineering from the Harbin Institute of Technology, Harbin, China, in 2014 and 2018, respectively. He is currently a lecturer with the College of Aerospace Engineering, University of Aeronautics and Astronautics, Nanjing, China. His current research interests are in the geometric methods for the guidance, dynamics and control of autonomous unmanned systems.

Xiangyu Shao received the B.S. degree in automation from Harbin Engineering University, Harbin, China, in 2016, and M.S. and Ph.D. degrees in control science and engineering from the Harbin Institute of Technology, Harbin, China, in 2018 and 2022, respectively. He is currently an assistant professor with the School of Astronautics, Harbin Institute of Technology. His research interests include space robots, soft robots, sliding mode control, and fractional-order control.

Bibliographic Information

Publish with us