Skip to main content

Responses to Human and Robot Errors in Human‒Robot Collaboration: An fNIRS Study

  • Conference paper
  • First Online:
Cross-Cultural Design (HCII 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14702))

Included in the following conference series:

  • 1221 Accesses

Abstract

Performance assessment in the era of human‒robot collaboration poses new challenges. Will human managers display varying responses to the success and failure of human versus robot employees? This study aims to investigate people’s responses to success and errors made by humans compared to those made by robots using self-report measures and neuroimaging techniques. Twenty-four participants were asked to imagine themselves as managers tasked with reviewing videos of human‒robot collaboration and evaluating the human and robot employees in the video. Results showed that, when the employee performed correctly, participants assigned more credit to the employee and showed stronger positive emotions when the employee was a robot than a human. When the employee made an error and caused failure, participants attributed more blame to the employee and showed stronger negative emotions when the employee was a human than a robot. Additionally, employee errors resulted in decreased trust, and the trust damage caused by human errors was higher than that caused by robot errors. Furthermore, the functional near-infrared spectroscopy technique showed that viewing robot errors caused decreased activation in the prefrontal cortex. These findings enrich our understanding of attribution, trust, and emotions in human‒robot collaboration from the perspective of human managers, providing practical managerial implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nass, C., Steuer, J., Tauber, E.R.: Computers are social actors, pp. 72–78 (1994). https://doi.org/10.1145/259963.260288

  2. Mao, Z., Zhang, J., Fang, K., Huang, D., Sun, Y.: Balancing U-type assembly lines with human–robot collaboration. Comput. Oper. Res. 159, 106359 (2023). https://doi.org/10.1016/j.cor.2023.106359

    Article  MathSciNet  Google Scholar 

  3. Chen, J., Fu, Y., Lu, W., Pan, Y.: Augmented reality-enabled human-robot collaboration to balance construction waste sorting efficiency and occupational safety and health. J. Environ. Manage. 348, 119341 (2023). https://doi.org/10.1016/j.jenvman.2023.119341

    Article  Google Scholar 

  4. Casper, J., Murphy, R.R.: Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center. IEEE Trans. Syst. Man Cybern. Part B Cybern. 33, 367–385 (2003). https://doi.org/10.1109/TSMCB.2003.811794

  5. Arikan, E., Altinigne, N., Kuzgun, E., Okan, M.: May robots be held responsible for service failure and recovery? The role of robot service provider agents’ human-likeness. J. Retail. Consum. Serv. 70, 103175 (2023). https://doi.org/10.1016/j.jretconser.2022.103175

    Article  Google Scholar 

  6. Harrison-Walker, L.J.: The effect of consumer emotions on outcome behaviors following service failure. J. Serv. Mark. 33, 285–302 (2019). https://doi.org/10.1108/JSM-04-2018-0124

    Article  Google Scholar 

  7. Baker, M.A., Kim, K.: Other customer service failures: emotions, impacts, and attributions. J. Hosp. Tour. Res. 42, 1067–1085 (2018). https://doi.org/10.1177/1096348016671394

    Article  Google Scholar 

  8. Lei, X., Rau, P.-L.P.: Effect of relative status on responsibility attributions in human–robot collaboration: mediating role of sense of responsibility and moderating role of power distance orientation. Comput. Hum. Behav. 122, 106820 (2021). https://doi.org/10.1016/j.chb.2021.106820

    Article  Google Scholar 

  9. Leo, X., Huh, Y.E.: Who gets the blame for service failures? Attribution of responsibility toward robot versus human service providers and service firms. Comput. Hum. Behav. 113, 106520 (2020). https://doi.org/10.1016/j.chb.2020.106520

    Article  Google Scholar 

  10. Lei, X., Rau, P.-L.P.: Should I blame the human or the robot? Attribution within a human–robot group. Int. J. Soc. Robot. 13, 363–377 (2021). https://doi.org/10.1007/s12369-020-00645-w

    Article  Google Scholar 

  11. Mezulis, A.H., Abramson, L.Y., Hyde, J.S., Hankin, B.L.: Is there a universal positivity bias in attributions? A meta-analytic review of individual, developmental, and cultural differences in the self-serving attributional bias. Psychol. Bull. 130, 711–747 (2004). https://doi.org/10.1037/0033-2909.130.5.711

    Article  Google Scholar 

  12. Malle, B.F.: The actor-observer asymmetry in attribution: a (surprising) meta-analysis. Psychol. Bull. 132, 895–919 (2006). https://doi.org/10.1037/0033-2909.132.6.895

    Article  Google Scholar 

  13. Sanders, T., Kaplan, A., Koch, R., Schwartz, M., Hancock, P.A.: The relationship between trust and use choice in human-robot interaction. Hum. Factors 61, 614–626 (2019). https://doi.org/10.1177/0018720818816838

    Article  Google Scholar 

  14. Schwarz, N.: Emotion, cognition, and decision making. Cogn. Emot. 14, 433–440 (2000). https://doi.org/10.1080/026999300402745

    Article  Google Scholar 

  15. Balconi, M., Fronda, G., Bartolo, A.: Affective, social, and informative gestures reproduction in human interaction: hyperscanning and brain connectivity. J. Mot. Behav. 53, 296–315 (2021). https://doi.org/10.1080/00222895.2020.1774490

    Article  Google Scholar 

  16. Lei, X., Rau, P.-L.P.: Emotional responses to performance feedback in an educational game during cooperation and competition with a robot: evidence from fNIRS. Comput. Hum. Behav. 138, 107496 (2023). https://doi.org/10.1016/j.chb.2022.107496

    Article  Google Scholar 

  17. Yorgancigil, E., Yildirim, F., Urgen, B.A., Erdogan, S.B.: An exploratory analysis of the neural correlates of human-robot interactions with functional near infrared spectroscopy. Front. Hum. Neurosci. 16, 883905 (2022). https://doi.org/10.3389/fnhum.2022.883905

    Article  Google Scholar 

  18. Kelley, H.H., Michela, J.L.: Attribution theory and research. Annu. Rev. Psychol. 31, 457–501 (1980). https://doi.org/10.1146/annurev.ps.31.020180.002325

    Article  Google Scholar 

  19. Belanche, D., Casaló, L.V., Flavián, C., Schepers, J.: Robots or frontline employees? Exploring customers’ attributions of responsibility and stability after service failure or success. J. Serv. Manag. 31, 267–289 (2020). https://doi.org/10.1108/JOSM-05-2019-0156

    Article  Google Scholar 

  20. Ryoo, Y., Jeon, Y.A., Kim, W.: The blame shift: robot service failures hold service firms more accountable. J. Bus. Res. 171, 114360 (2024). https://doi.org/10.1016/j.jbusres.2023.114360

    Article  Google Scholar 

  21. Henderson, C., Gillan, D.J.: Attributing blame in human-robot teams with robots of differing appearance. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 65, 139–142 (2021). https://doi.org/10.1177/1071181321651020

  22. Pavone, G., Meyer-Waarden, L., Munzel, A.: Rage against the machine: experimental insights into customers’ negative emotional responses, attributions of responsibility, and coping strategies in artificial intelligence-based service failures. J. Interact. Mark. 58, 52–71 (2023). https://doi.org/10.1177/10949968221134492

    Article  Google Scholar 

  23. Kim, T., Hinds, P.: Who should I blame? Effects of autonomy and transparency on attributions in human-robot interaction. In: IEEE International Symposium on Robot and Human Interactive Communication, ROMAN 2006, pp. 80–85 (2006). https://doi.org/10.1109/ROMAN.2006.314398

  24. Furlough, C., Stokes, T., Gillan, D.J.: Attributing blame to robots: I. The influence of robot autonomy. Hum. Factors J. Hum. Factors Ergon. Soc. 63, 592–602 (2021). https://doi.org/10.1177/0018720819880641

  25. Hong, J.-W., Williams, D.: Racism, responsibility and autonomy in HCI: testing perceptions of an AI agent. Comput. Hum. Behav. 100, 79–84 (2019). https://doi.org/10.1016/j.chb.2019.06.012

    Article  Google Scholar 

  26. Swanson, S.R., Davis, J.C.: The relationship of differential loci with perceived quality and behavioral intentions. J. Serv. Mark. 17, 202–219 (2003). https://doi.org/10.1108/08876040310467943

    Article  Google Scholar 

  27. Gailey, J.A.: Attribution of responsibility for organizational wrongdoing: a partial test of an integrated model. J. Criminol. 2013, e920484 (2013). https://doi.org/10.1155/2013/920484

    Article  Google Scholar 

  28. Coulter, K.S., Coulter, R.A.: Determinants of trust in a service provider: the moderating role of length of relationship. J. Serv. Mark. 16, 35–50 (2002). https://doi.org/10.1108/08876040210419406

    Article  Google Scholar 

  29. Hancock, P.A., Kessler, T.T., Kaplan, A.D., Brill, J.C., Szalma, J.L.: Evolving trust in robots: Specification through sequential and comparative meta-analyses. Hum. Factors J. Hum. Factors Ergon. Soc. 63, 1196–1229 (2021). https://doi.org/10.1177/0018720820922080

  30. Wright, J.L., Chen, J.Y.C., Lakhmani, S.G.: Agent transparency and reliability in human-robot interaction: the influence on user confidence and perceived reliability. IEEE Trans. Hum. Mach. Syst. 50, 254–263 (2020). https://doi.org/10.1109/THMS.2019.2925717

  31. Kaniarasu, P., Steinfeld, A.M.: Effects of blame on trust in human robot interaction. In: 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp. 850–855 (2014). https://doi.org/10.1109/ROMAN.2014.6926359

  32. Paetzel, M., Perugia, G., Castellano, G.: The persistence of first impressions: the effect of repeated interactions on the perception of a social robot. In: Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, pp. 73–82. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3319502.3374786

  33. Alarcon, G.M., Gibson, A.M., Jessup, S.A., Capiola, A.: Exploring the differential effects of trust violations in human-human and human-robot interactions. Appl. Ergon. 93, 103350 (2021). https://doi.org/10.1016/j.apergo.2020.103350

    Article  Google Scholar 

  34. Wang, Y., Quadflieg, S.: In our own image? Emotional and neural processing differences when observing human–human vs human–robot interactions. Soc. Cogn. Affect. Neurosci. 10, 1515–1524 (2015). https://doi.org/10.1093/scan/nsv043

    Article  Google Scholar 

  35. Zonca, J., Folsø, A., Sciutti, A.: Trust is not all about performance: trust biases in interaction with humans, robots and computers. arXiv (2021)

    Google Scholar 

  36. Ekman, P.: An argument for basic emotions. Cogn. Emot. 6, 169–200 (1992). https://doi.org/10.1080/02699939208411068

    Article  Google Scholar 

  37. Plutchik, R.: A psychoevolutionary theory of emotions. Soc. Sci. Inf. 21, 529–553 (1982). https://doi.org/10.1177/053901882021004003

    Article  Google Scholar 

  38. Lin, H., Chi, O.H., Gursoy, D.: Antecedents of customers’ acceptance of artificially intelligent robotic device use in hospitality services. J. Hosp. Mark. Manag. 29, 530–549 (2020). https://doi.org/10.1080/19368623.2020.1685053

    Article  Google Scholar 

  39. Gelbrich, K.: Anger, frustration, and helplessness after service failure: coping strategies and effective informational support. J. Acad. Mark. Sci. 38, 567–585 (2010). https://doi.org/10.1007/s11747-009-0169-6

    Article  Google Scholar 

  40. Roseman, I.J.: Appraisal determinants of discrete emotions. Cogn. Emot. 5, 161–200 (1991). https://doi.org/10.1080/02699939108411034

    Article  Google Scholar 

  41. Boere, K., Hecker, K., Krigolson, O.E.: Validation of a mobile fNIRS device for measuring working memory load in the prefrontal cortex. Int. J. Psychophysiol. 195, 112275 (2024). https://doi.org/10.1016/j.ijpsycho.2023.112275

    Article  Google Scholar 

  42. Wiese, E., Abubshait, A., Azarian, B., Blumberg, E.J.: Brain stimulation to left prefrontal cortex modulates attentional orienting to gaze cues. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180430 (2019). https://doi.org/10.1098/rstb.2018.0430

  43. Harmon-Jones, E., Gable, P.A., Peterson, C.K.: The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update. Biol. Psychol. 84, 451–462 (2010). https://doi.org/10.1016/j.biopsycho.2009.08.010

    Article  Google Scholar 

  44. Kreplin, U., Fairclough, S.: Activation of the rostromedial prefrontal cortex during the experience of positive emotion in the context of esthetic experience. An fNIRS study. Front. Hum. Neurosci. 7, 879 (2013). https://doi.org/10.3389/fnhum.2013.00879

    Article  Google Scholar 

  45. Zhou, L., Wu, B., Deng, Y., Liu, M.: Brain activation and individual differences of emotional perception and imagery in healthy adults: a functional near-infrared spectroscopy (fNIRS) study. Neurosci. Lett. 797, 137072 (2023). https://doi.org/10.1016/j.neulet.2023.137072

    Article  Google Scholar 

  46. Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59 (1994). https://doi.org/10.1016/0005-7916(94)90063-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China 71942005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Luen Patrick Rau .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, F., Ji, Y., Lei, X., Rau, PL.P. (2024). Responses to Human and Robot Errors in Human‒Robot Collaboration: An fNIRS Study. In: Rau, PL.P. (eds) Cross-Cultural Design. HCII 2024. Lecture Notes in Computer Science, vol 14702. Springer, Cham. https://doi.org/10.1007/978-3-031-60913-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60913-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60912-1

  • Online ISBN: 978-3-031-60913-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics